当前位置:   article > 正文

梯度下降算法对比(批量下降/随机下降/mini-batch)

比较基于单个样本的批度下降和采用矩阵形式的批度下降的所需要的训练时间的长短

大规模机器学习:

 

 

 

线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本)

 

批量梯度下降算法(Batch gradient descent):

每计算一次梯度会遍历全部的训练样本,如果训练样本的比较多时,内存消耗过大。

 

随机梯度下降算法:

1、 首先将随机打乱的训练样本数据

2、 外循环:(一般2—10次即可,若内循环中次数100000以上,则一次即可)

内循环:遍历所有的训练样本,每次梯度下降时使用一个样本计算梯度。

与批量梯度像算法相比,其下降曲线不停,图中右侧红色表示批量梯度下降算法,洋红表示随机梯度下降算法。

 

Mini-Batch梯度下降算法

1、 设置每次遍历的样本数b

2、 外循环:

内循环:遍历所有的样本,每b个样本更新一次梯度

 

 

对比:

批量下降:每次梯度更新使用全部的样本

随机下将:每次梯度更新使用1个样本

Mini-batch:每次梯度更新使用b个样本,b>1,小于全部的样本数。

 

随机梯度下降算法的收敛:

1、 在更新梯度前计算损失函数:

2、 比如:绘制损失函数的曲线每1000个样本

 

 

 

 

转载于:https://www.cnblogs.com/abella/p/10348332.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/319091
推荐阅读
相关标签
  

闽ICP备14008679号