赞
踩
路透社数据集(Reuter),它包含许多短新闻及其对应的主题,由路透社在1986 年发布。它是一个简单的、广泛使用的文本分类数据集。它包括46 个不同的主题:某些主题的样本更多,但训练集中每个主题都有至少10 个样本。与IMDB 和MNIST 类似,路透社数据集也内置为Keras 的一部分。
我们需要将路透社新闻划分为46 个互斥的主题。因为有多个类别,所以这是多分类(multiclass classification)问题的一个例子。因为每个数据点只能划分到一个类别,所以更具体地说,这是单标签、多分类(single-label, multiclass classification)问题的一个例子。如果每个数据点可以划分到多个类别(主题),那它就是一个多标签、多分类(multilabel,multiclass classification)问题。
from keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
print(len(train_data)) #8982
print(len(test_data)) #2246
print(train_data[10])
print(train_labels[10]) # 3
与IMDB 数据集一样,参数num_words=10000 将数据限定为前10 000 个最常出现的单词。我们有8982 个训练样本和2246 个测试样本。与IMDB 评论一样,每个样本都是一个整数列表(表示单词索引)。样本对应的标签是一个0~45 范围内的整数,即话题索引编号。
我们可以用下列代码将索引解码为单词。
word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# Note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
import numpy as np
def to_one_hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results
# Our vectorized training labels
one_hot_train_labels = to_one_hot(train_labels)
# Our vectorized test labels
one_hot_test_labels = to_one_hot(test_labels)
Keras 内置方法也可以实现这个操作。
from keras.utils.np_utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)
这个主题分类问题与前面的电影评论分类问题类似,两个例子都是试图对简短的文本片段进行分类。但这个问题有一个新的约束条件:输出类别的数量从2 个变为46 个。输出空间的维度要大得多。对于前面用过的Dense 层的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与分类问题相关的一些信息,那么这些信息无法被后面的层找回,也就是说,每一层都可能成为信息瓶颈。上一个例子使用了16 维的中间层,但对这个例子来说16 维空间可能太小了,无法学会区分46 个不同的类别。这种维度较小的层可能成为信息瓶颈,永久地丢失相关信息。出于这个原因,下面将使用维度更大的层,包含64 个单元。
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
关于这个架构还应该注意:
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))
import matplotlib.pyplot as plt %matplotlib inline loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(loss) + 1) plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()
plt.clf() # clear figure
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
网络在训练9 轮后开始过拟合。我们从头开始训练一个新网络,共9 个轮次,然后在测试集上评估模型。
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(partial_x_train,
partial_y_train,
epochs=9,
batch_size=512,
validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)
results
[1.006295904344676, 0.7849510312080383]
这种方法可以得到约80% 的精度。对于平衡的二分类问题,完全随机的分类器能够得到50% 的精度。但在这个例子中,完全随机的精度约为19%,所以上述结果相当不错,至少和随机的基准比起来还不错。
import copy
#【完全随机】
test_labels_copy = copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)
0.18432769367764915
predictions = model.predict(x_test)
print(predictions[0].shape) #(46,)
print(np.sum(predictions[0])) #0.99999994
print(np.argmax(predictions[0])) #3
categorical_crossentropy
作为损失函数。sparse_categorical_crossentropy
损失函数。Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。