当前位置:   article > 正文

在英特尔开发套件上用OpenVINO加速YOLOv8目标检测模型_yolov8 openvino 加速

yolov8 openvino 加速

作者:英特尔物联网行业创新大使 杨雪锋

本案例适用于x86以上英特尔平台

1.1 简介

        《在英特尔开发套件上用OpenVINO加速YOLOv8分类模型》介绍了在英特尔开发套件上使用OpenVINO™ 开发套件部署并测评YOLOv8的分类模型,本文将介绍在英特尔开发套件上使用OpenVINO™加速YOLOv8目标检测模型

请先下载本文的范例代码仓,并搭建好YOLOv8的OpenVINO推理程序开发环境

git clone https://gitee.com/ppov-nuc/yolov8_openvino.git

1.2 导出YOLOv8目标检测OpenVINO IR 模型

        YOLOv8的目标检测模型有5种,在COCO数据集完成训练,如下表所示。

        首先使用命令:yolo export model=yolov8n.pt format=onnx,完成yolov8n.onnx模型导出,如下图所示。

        然后使用命令:mo -m yolov8n.onnx --compress_to_fp16,优化并导出FP16精度的OpenVINO IR格式模型,如下图所示。

1.3 用benchmark_app测试yolov8目标检测模型的推理计算性能

     benchmark_appOpenVINOTM工具套件自带的AI模型推理计算性能测试工具,可以指定在不同的计算设备上,在同步或异步模式下,测试出不带前后处理的纯AI模型推理计算性能。

        使用命令:benchmark_app -m yolov8n.xml -d GPU,获得yolov8n.xml模型在英特尔开发套件的集成显卡上的异步推理计算性能,如下图所示。

1.4 使用OpenVINO Python API编写YOLOv8目标检测模型推理程序

        用Netron打开yolov8n.onnx,如下图所示,可以看到模型的输入是形状为[1,3,640,640]的张量,输出是形状为[1,84,8400]的张量,其中“84”的定义为:cx,cy,h,w和80种类别的分数。“8400”是指YOLOv8的3个检测头在图像尺寸为640时,有640/8=80, 640/16=40, 640/32=20, 80x80+40x40+20x20=8400个输出单元格。

        基于OpenVINO Python API的YOLOv8目标检测模型的范例程序:yolov8_od_ov_sync_infer_demo.py,其核心源代码如下所示:

  1. # 实例化Core对象
  2. core = Core()
  3. # 载入并编译模型
  4. net = core.compile_model(f'{MODEL_NAME}.xml', device_name="AUTO")
  5. # 获得模型输出节点
  6. output_node = net.outputs[0]  # yolov8n只有一个输出节点
  7. ir = net.create_infer_request()
  8. cap = cv2.VideoCapture("store-aisle-detection.mp4")
  9. while True:
  10.     start = time.time()
  11.     ret, frame = cap.read()
  12.     if not ret:
  13.         break
  14.     # 图像数据前处理
  15.     [height, width, _] = frame.shape
  16.     length = max((height, width))
  17.     image = np.zeros((length, length, 3), np.uint8)
  18.     image[0:height, 0:width] = frame
  19.     scale = length / 640
  20.     blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
  21.     # 执行推理计算
  22.     outputs = ir.infer(blob)[output_node]
  23.     # 推理结果后处理并显示处理结果
  24.     outputs = np.array([cv2.transpose(outputs[0])])
  25.     ... ...
  26. cv2.imshow('YOLOv8 OpenVINO Infer Demo on AIxBoard', frame)

        yolov8_od_ov_sync_infer_demo.py运行结果,如下图所示:

1.5 结论

英特尔开发套件借助N5105处理器的集成显卡(24个执行单元)和OpenVINO,可以在YOLOv8的目标检测模型上获得相当不错的性能。通过异步处理AsyncInferQueue,还能进一步提升计算设备的利用率,提高AI推理程序的吞吐量。下一篇将继续介绍在《英特尔开发套件上用OpenVINO加速YOLOv8-Seg实例分割模型》。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/361402?site
推荐阅读
相关标签
  

闽ICP备14008679号