赞
踩
使用ChatGPT大家可能都是知道prompt,
(1)想像一下,如果我需要快速读一本书,想通过本书作为prompt,使用ChatGPT根据书本中来回答问题,我们需要怎么做?
(2)假设你需要一个问答任务用到prompt A,摘要任务要使用到prompt B,那如何管理这些prompt呢?因此需要用LangChain来管理这些prompt。
LangChain的出现,简化了我们在使用ChatGPT的工程复杂度。
前提:运行一下代码,需要OPENAI_API_KEY(OpenAI申请的key),同时统一引入这些库:
- # 导入LLM包装器
- from langchain import OpenAI, ConversationChain
- from langchain.agents import initialize_agent
- from langchain.agents import load_tools
- from langchain.chains import LLMChain
- from langchain.prompts import PromptTemplate
LLM:从语言模型中输出预测结果,和直接使用OpenAI的接口一样,输入什么就返回什么。
- llm = OpenAI(model_name="text-davinci-003", temperature=0.9) // 这些都是OpenAI的参数
- text = "What would be a good company name for a company that makes colorful socks?"
- print(llm(text))
- // 以上就是打印调用OpenAI接口的返回值,相当于接口的封装,实现的代码可以看看github.com/hwchase17/langchain/llms/openai.py的OpenAIChat
以上代码运行结果:
Cozy Colours Socks.
Prompt Templates:管理LLMs的Prompts,就像我们需要管理变量或者模板一样。
- prompt = PromptTemplate(
- input_variables=["product"],
- template="What is a good name for a company that makes {product}?",
- )
- // 以上是两个参数,一个输入变量,一个模板字符串,实现的代码可以看看github.com/hwchase17/langchain/prompts
- // PromptTemplate实际是基于StringPromptTemplate,可以支持字符串类型的模板,也可以支持文件类型的模板
以上代码运行结果:
What is a good name for a company that makes colorful socks?
Chains:将LLMs和prompts结合起来,前面提到提供了OpenAI的封装和你需要问的字符串模板,就可以执行获得返回了。
- from langchain.chains import LLMChain
- chain = LLMChain(llm=llm, prompt=prompt) // 通过LLM的llm变量,Prompt Templates的prompt生成LLMChain
- chain.run("colorful socks") // 实际这里就变成了实际问题:What is a good name for a company that makes colorful socks?
Agents:基于用户输入动态地调用chains,LangChani可以将问题拆分为几个步骤,然后每个步骤可以根据提供个Agents做相关的事情。
- # 导入一些tools,比如llm-math
- # llm-math是langchain里面的能做数学计算的模块
- tools = load_tools(["llm-math"], llm=llm)
- # 初始化tools,models 和使用的agent
- agent = initialize_agent(
- tools, llm, agent="zero-shot-react-description", verbose=True)
- text = "12 raised to the 3 power and result raised to 2 power?"
- print("input text: ", text)
- agent.run(text)
通过如上的代码,运行结果(拆分为两个部分):
- > Entering new AgentExecutor chain...
- I need to use the calculator for this
- Action: Calculator
- Action Input: 12^3
- Observation: Answer: 1728
- Thought: I need to then raise the previous result to the second power
- Action: Calculator
- Action Input: 1728^2
- Observation: Answer: 2985984
-
- Thought: I now know the final answer
- Final Answer: 2985984
- > Finished chain.
Memory:就是提供对话的上下文存储,可以使用Langchain的ConversationChain,在LLM交互中记录交互的历史状态,并基于历史状态修正模型预测。
- # ConversationChain用法
- llm = OpenAI(temperature=0)
- # 将verbose设置为True,以便我们可以看到提示
- conversation = ConversationChain(llm=llm, verbose=True)
- print("input text: conversation")
- conversation.predict(input="Hi there!")
- conversation.predict(
- input="I'm doing well! Just having a conversation with an AI.")
通过多轮运行以后,就会出现:
- Prompt after formatting:
- The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
-
- Current conversation:
-
- Human: Hi there!
- AI: Hi there! It's nice to meet you. How can I help you today?
- Human: I'm doing well! Just having a conversation with an AI.
- AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about?
如下:
- # 导入LLM包装器
- from langchain import OpenAI, ConversationChain
- from langchain.agents import initialize_agent
- from langchain.agents import load_tools
- from langchain.chains import LLMChain
- from langchain.prompts import PromptTemplate
- # 初始化包装器,temperature越高结果越随机
- llm = OpenAI(temperature=0.9)
- # 进行调用
- text = "What would be a good company name for a company that makes colorful socks?"
- print("input text: ", text)
- print(llm(text))
-
- prompt = PromptTemplate(
- input_variables=["product"],
- template="What is a good name for a company that makes {product}?",
- )
- print("input text: product")
- print(prompt.format(product="colorful socks"))
-
- chain = LLMChain(llm=llm, prompt=prompt)
- chain.run("colorful socks")
-
- # 导入一些tools,比如llm-math
- # llm-math是langchain里面的能做数学计算的模块
- tools = load_tools(["llm-math"], llm=llm)
- # 初始化tools,models 和使用的agent
- agent = initialize_agent(tools,
- llm,
- agent="zero-shot-react-description",
- verbose=True)
- text = "12 raised to the 3 power and result raised to 2 power?"
- print("input text: ", text)
- agent.run(text)
-
- # ConversationChain用法
- llm = OpenAI(temperature=0)
- # 将verbose设置为True,以便我们可以看到提示
- conversation = ConversationChain(llm=llm, verbose=True)
- print("input text: conversation")
- conversation.predict(input="Hi there!")
- conversation.predict(
- input="I'm doing well! Just having a conversation with an AI.")
https://note.com/npaka/n/n155e66a263a2
https://www.cnblogs.com/AudreyXu/p/17233964.html
https://github.com/hwchase17/langchain
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。