赞
踩
主函数main:
- import torch
- from torch.utils.data import DataLoader
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torchvision import datasets,transforms
- # from Lenet5 import Lenet5
- from Resnet import ResNet18
-
- def main():
- batchsz = 128 # how to make sure?
- # load train data
- cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
- transforms.Resize((32, 32)),
- transforms.ToTensor(),
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225])
- ]), download=True)
- cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)
-
- cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
- transforms.Resize((32, 32)),
- transforms.ToTensor(),
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225])
- ]), download=True)
- cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)
-
- x, label = iter(cifar_train).__next__() # ?
- print('x:',x.shape,'label:',label.shape)
-
- device = torch.device('cuda')
- # model = Lenet5().to(device)
- model = ResNet18().to(device)
- criteon = nn.CrossEntropyLoss().to(device)
- optimizer = optim.Adam(model.parameters(), lr=1e-3)
- print(model)
- for epoch in range(1000):
-
- model.train()
- for batch_idx, (x, label) in enumerate(cifar_train):
- x, label = x.to(device), label.to(device)
- logits = model(x)
- loss = criteon(logits, label)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- # test
- model.eval()
- with torch.no_grad(): # test has no user for caculating grad.
- total_correct = 0
- total_num = 0
- for x, label in cifar_test:
- x, label = x.to(device), label.to(device)
- logits = model(x)
- pred = logits.argmax(dim=1)
- correct = torch.eq(pred, label).float().sum().item()
- total_correct += correct
- total_num += x.size(0)
-
- acc = total_correct/total_num
- print(epoch, acc)
-
- if __name__ == '__main__':
- main()
Lenet5类:
- import torch
- from torch import nn
- from torch.nn import functional as F
-
- class Lenet5(nn.Module):
-
- def __init__(self):
- super(Lenet5, self).__init__()
- self.conv_unit = nn.Sequential(
- nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=0),
- nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
- nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=0),
- nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
- )
- # flatten
- self.fc_unit = nn.Sequential(
- nn.Linear(32*5*5, 32),
- nn.ReLU(),
- # nn.Linear(120, 84),
- # nn.ReLU(),
- nn.Linear(32, 10)
- )
-
- tmp = torch.randn(2, 3, 32, 32)
- out = self.conv_unit(tmp)
- print('con out:', out.shape)
- # con out: torch.Size([2, 32, 5, 5])
-
- def forward(self, x): # indent make no mistake
- batchsz = x.size(0)
- x = self.conv_unit(x)
- x = x.view(batchsz, 32 * 5 * 5)
- logits = self.fc_unit(x)
-
- return logits
- def main():
- net = Lenet5()
-
- tmp = torch.randn(2, 3, 32, 32) # ?
- out = net(tmp)
- print('lenet out:', out.shape)
-
- if __name__ == '__main__':
- main()
Resnet类:
- import torch
- from torch import nn
- from torch.nn import functional as F
-
- class ResBlk(nn.Module):
- def __init__(self, ch_in, ch_out, stride=1):
- super(ResBlk, self).__init__()
-
- self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
- self.bn1 = nn.BatchNorm2d(ch_out)
- self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
- self.bn2 = nn.BatchNorm2d(ch_out)
-
- self.extra = nn.Sequential()
- if ch_out != ch_in:
- self.extra = nn.Sequential(
- nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
- nn.BatchNorm2d(ch_out)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- # short cut.
- out = self.extra(x) + out # aim:x is the same of out.
- out = F.relu(out)
- return out # the result of the final prediction
-
- class ResNet18(nn.Module):
- def __init__(self):
- super(ResNet18, self).__init__()
- self.conv1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
- nn.BatchNorm2d(64)
- )
- self.blk1 = ResBlk(64, 128, stride=2)
- self.blk2 = ResBlk(128, 256, stride=2)
- self.blk3 = ResBlk(256, 512, stride=2)
- self.blk4 = ResBlk(512, 512, stride=2)
- self.outlayer = nn.Linear(512*1*1, 10)
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
-
- x = self.blk1(x)
- x = self.blk2(x)
- x = self.blk3(x)
- x = self.blk4(x)
-
- x = F.adaptive_avg_pool2d(x, [1, 1])
- x = x.view(x.size(0), -1)
- x = self.outlayer(x)
-
- return x
-
- def main():
- blk = ResBlk(64, 128, stride=4)
- tmp = torch.randn(2, 64, 32, 32)
- out = blk(tmp)
- print('block:', out.shape)
-
- x = torch.randn(2, 3, 32, 32)
- model = ResNet18()
- out = model(x)
- print('resnet:', out.shape)
-
- if __name__ == '__main__':
- main()
想的时候都是困难,做的时候才是答案。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。