赞
踩
解决问题:当我们运行不同的代码时,可能会用到不同版本的Pytorch/Tensorflow,不同版本的Pytorch/Tensorflow在使用GPU时,对应不同的CUDA版本,这时候就需要安装不同的CUDA版本。
在系统中安装多个版本的CUDA,比较麻烦,这时候就可以在虚拟环境里面直接安装CUDA。
conda create -n name python=3.X
source activate name
# 安装CUDA
conda install cudatoolkit=11.0 # 指定版本
# 安装cudnn,如果不指定版本,在安装CUDA之后,会自动匹配对应版本的cudnn安装
conda install cudnn=7.3 # 指定版本
这里是指定搜索包的路径,速度会更快
# 安装CUDA
conda install cudatoolkit=11.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
# 安装cudnn
conda install cudnn=7.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
安装之后的 CUDA 和 cudnn 会存放在虚拟环境的 lib 文件夹 或者 include 文件夹里面。
# Pytorch
import torch
print(torch.cuda.is_available())
# Tensorflow
import tensorflow as tf
print(tf.test.is_gpu_available())
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。