当前位置:   article > 正文

Anaconda虚拟环境中安装CUDA_anaconda cuda

anaconda cuda

解决问题:当我们运行不同的代码时,可能会用到不同版本的Pytorch/Tensorflow,不同版本的Pytorch/Tensorflow在使用GPU时,对应不同的CUDA版本,这时候就需要安装不同的CUDA版本。

在系统中安装多个版本的CUDA,比较麻烦,这时候就可以在虚拟环境里面直接安装CUDA。

  • 创建虚拟环境
conda create -n name python=3.X
  • 1
  • 激活虚拟环境
source activate name
  • 1
  • 安装Pytorch/Tensorflow的GPU版本
  • 按照官网对应的安装对应版本的CUDA和cudnn
# 安装CUDA
conda install cudatoolkit=11.0 # 指定版本
# 安装cudnn,如果不指定版本,在安装CUDA之后,会自动匹配对应版本的cudnn安装
conda install cudnn=7.3 # 指定版本
  • 1
  • 2
  • 3
  • 4

这里是指定搜索包的路径,速度会更快

# 安装CUDA
conda install cudatoolkit=11.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
# 安装cudnn
conda install cudnn=7.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
  • 1
  • 2
  • 3
  • 4

安装之后的 CUDA 和 cudnn 会存放在虚拟环境的 lib 文件夹 或者 include 文件夹里面。

  • 验证是否安装成功
# Pytorch
import torch
print(torch.cuda.is_available())
  • 1
  • 2
  • 3
# Tensorflow
import tensorflow as tf
print(tf.test.is_gpu_available())
  • 1
  • 2
  • 3
本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/398058
推荐阅读
相关标签
  

闽ICP备14008679号