当前位置:   article > 正文

MySQL锁详解

mysql锁

五.锁

5.1 概述

        锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源CPU、 RAM、I/O的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

MySQL中锁的分类:

1.按照锁的使用方式分类:

共享锁、排它锁

2.按照锁的粒度分:

全局锁:锁定数据库中的所有表。

表级锁:每次操作锁住整张表。

行级锁:每次操作锁住对应的行数据。

3.从思想层面上分:

悲观锁、乐观锁

5.2 共享锁&排他锁

5.2.1 共享锁

共享锁,Share lock,也叫读锁。它是指当对象被锁定时,允许其它事务读取该对象,也允许其它事务从该对象上再次获取共享锁,但不能对该对象进行写入。 加锁方式是:

  1. # 方式1
  2. select ... lock in share mode;
  3. # 方式2
  4. select ... for share;

如果事务T1 在某对象持有共享(S)锁,则事务T2 需要再次获取该对象的锁时,会出现下面两种情况: - 如果T2 获取该对象的共享(S)锁,则可以立即获取锁; - 如果T2 获取该对象的排他(X)锁,则无法获取锁;

例子:

为了更好的理解上述两种情况,可以参照下面的执行顺序流和实例图

给user表加共享锁

给user表id=3的行加共享锁

通过上述两个实例可以看出: - 当共享锁加在user表上,则其它事务可以再次获取user表的共享锁,其它事务再次获取user表的排他锁失败,操作被堵塞; - 当共享锁加在user表id=3的行上,则其它事务可以再次获取user表id=3行上的共享锁,其它事务再次获取user表id=3行上的排他锁失败,操作被堵塞,但是事务可以再次获取user表id!=3行上的排他锁;

5.2.2 排它锁

排它锁,Exclusive Lock,也叫写锁或者独占锁,主要是防止其它事务和当前加锁事务锁定同一对象。同一对象主要有两层含义: - 当排他锁加在表上,则其它事务无法对该表进行insert,update,delete,alter,drop等更新操作; - 当排他锁加在表的行上,则其它事务无法对该行进行insert,update,delete,alter,drop等更新操作;

排它锁加锁方式为:

select ... for update;

例子:

为了更好的说明排他锁,可以参照下面的执行顺序流和实例图:

给user表对象加排他锁

给user表id=3的行对象加排他锁

5.3 全局锁

5.3.1 介绍

        全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。 其典型的使用场景是做全库的逻辑备份,在进行逻辑备份的过程中,通过加全局锁,数据库中的数据就不会发生变化,这样就保证了数据的一致性和完整性。。

5.3.2 语法

1.加全局锁

flush tables with read lock ;

2.数据备份

mysqldump -uroot –p1234 itcast > itcast.sql

3.释放锁

unlock tables ;

5.3.3 特点

数据库中加全局锁,是一个比较重的操作,存在以下问题:

1.如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。

2.如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志(binlog),会导 致主从延迟。

注意:在InnoDB引擎中,我们也可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致性数据备份。

mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql

5.4 表级锁

5.4.1 介绍

表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、 InnoDB、BDB等存储引擎中。

对于表级锁,主要分为以下三类:表锁、元数据锁(meta data lock,MDL)、意向锁

5.4.2 表锁

1.什么是表锁

        表锁就是对整张表加锁,包含读锁和写锁,由MySQL Server实现,表锁需要显示加锁或释放锁,具体指令如下:

  1. # 给表加写锁
  2. lock tables tablename write;
  3. # 给表加读锁
  4. lock tables tablename read;
  5. # 释放锁
  6. unlock tables;

2.表锁的特点

A.读锁

        代表当前表为只读状态,读锁是一种共享锁。需要注意的是,读锁除了会限制其它线程的操作外,也会限制加锁线程的行为,具体限制如下: 1. 加锁线程只能对当前表进行读操作,不能对当前表进行更新操作,不能对其它表进行所有操作; 2. 其它线程只能对当前表进行读操作,不能对当前表进行更新操作,可以对其它表进行所有操作;

例子

B.写锁 

写锁:写锁是一种独占锁,需要注意的是,写锁除了会限制其它线程的操作外,也会限制加锁线程的行为,具体限制如下: 1. 加锁线程对当前表能进行所有操作,不能对其它表进行任何操作; 2. 其它线程不能对当前表进行任何操作,可以对其它表进行任何操作

3.结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户端的写。 并且加读锁和写锁的线程不能再对其它表做任何操作

5.4.3 元数据锁

1.什么是元数据锁

元数据锁:metadata lock,简称MDL,它是在MySQL 5.5版本引进的。元数据锁不用像表锁那样显式的加锁和释放锁,而是在访问表时被自动加上,以保证读写的正确性。加锁和释放锁规则如下:

  • MDL读锁之间不互斥,也就是说,允许多个线程同时对加了 MDL读锁的表进行CRUD(增删改查)操作;
  • MDL写锁,它和读锁、写锁都是互斥的,目的是用来保证变更表结构操作的安全性。也就是说,当对表结构进行变更时,会被默认加 MDL写锁,因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。
  • MDL读写锁是在事务commit之后才会被释放;

2.例子

为了更好的说明 MDL读锁规则,可以参照下面的顺序执行流和实例图:

为了更好的说明 MDL写锁规则,可以参照下面的顺序执行流和实例图:

5.4.4 意向锁

1.介绍

为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。

有了意向锁之后:

客户端一:在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

其他客户端:在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而不用逐行判断表中每行是否有行锁。

2.分类

意向共享锁(IS): 由语句select ... lock in share mode添加 。 与 表锁共享锁 (read)兼容,与表锁排他锁(write)互斥。

意向排他锁(IX): 由insert、update、delete、select...for update添加 。与表锁共享锁(read)及排他锁(write)都互斥,意向锁之间不会互斥。

3.注意

一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。

可以通过以下SQL,查看意向锁及行锁的加锁情况:

  1. select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
  2. performance_schema.data_locks;

5.4.5 锁的兼容性

下面的图表总结了表级锁类型的兼容性

5.5 行级锁

5.5.1 介绍

行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。并不是所有的引擎都支持行锁,比如,InnoDB引擎支持行锁而 MyISAM引擎不支持。

InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的 锁。对于行级锁,主要分为以下三类:

行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在 RC、RR隔离级别下都支持。

间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事 务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。 

临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。 在RR隔离级别下支持。 

5.5.2 行锁

1.介绍

InnoDB实现了以下两种类型的行锁:

共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。

排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他 锁。

两种行锁的兼容情况如下:

常见的SQL语句,在执行时,所加的行锁如下:

5.5.3 间隙锁&临键锁

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 临键锁(next-key )进行搜索和索引扫描,以防止幻读。

索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。

索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。

索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。

注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会 阻止另一个事务在同一间隙上采用间隙锁。

5.5.4 示例

A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。

B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。 

介绍分析一下:我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也 就是29)。此时会对18加临键锁,并对29之前的间隙加锁。

C.索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。 

查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部 分:

[19]

(19,25]

(25,+∞] 

所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临键锁(正无穷及之前的间隙)。

5.6 乐观锁&悲观锁

在MySQL中,无论是悲观锁还是乐观锁,都是人们对概念的一种思想抽象,它们本身还是利用 MySQL提供的锁机制来实现的。其实,除了在MySQL数据,像 Java语言里面也有乐观锁和悲观锁的概念。

  • 悲观锁,可以理解成:在对任意记录进行修改前,先尝试为该记录加上排他锁(exclusive locking),采用的是先获取锁再操作数据的策略,可能会产生死锁;
  • 乐观锁,是相对悲观锁而言,一般不会利用数据库的锁机制,而是采用类似版本号比较之类的操作,因此乐观锁不会产生死锁的问题;

5.7 死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。可以通过下面的指令查看死锁

show engine innodb status\G

当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置,InnoDB 中 innodb_lock_wait_timeout 的默认值是 50s。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其它事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启死锁检测。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/421466
推荐阅读
相关标签
  

闽ICP备14008679号