当前位置:   article > 正文

算法的时间复杂度和空间复杂度_算法的时间和空间复杂度

算法的时间和空间复杂度

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列

  1. long long Fib(int N)
  2. {
  3. if (N < 3)
  4. return 1;
  5. return Fib(N - 1) + Fib(N - 2);
  6. }

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度空间复杂度


时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。 

下面举个例子:

请计算一下Func1中++count语句总共执行了多少次?

  1. void Func1(int N)
  2. {
  3. int count = 0;
  4. for (int i = 0; i < N; ++i)
  5. {
  6. for (int j = 0; j < N; ++j)
  7. {
  8. ++count;
  9. }
  10. }
  11. for (int k = 0; k < 2 * N; ++k)
  12. {
  13. ++count;
  14. }
  15. int M = 10;
  16. while (M--)
  17. {
  18. ++count;
  19. }
  20. printf("%d\n", count);
  21. }

 Func1 执行的基本操作次数 : F(N) = N^2 + 2*N + 10

代入数字计算一下

N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010

可以发现当N越来越大的时候,数字的大小主要取决于N^2了。

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为: O(N^2)

N = 10 F(N) = 100
N = 100 F(N)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/437381
推荐阅读
相关标签
  

闽ICP备14008679号