赞
踩
gym是用于开发和比较强化学习算法的工具包,在python中安装gym库和其中子场景都较为简便。
安装gym:
pip install gym
安装自动驾驶模块,这里使用 Edouard Leurent 发布在 github 上的包 highway-env:
pip install --user git+https://github.com/eleurent/highway-env
其中包含6个场景:
高速公路——“highway-v0”
汇入——“merge-v0”
环岛——“roundabout-v0”
泊车——“parking-v0”
十字路口——“intersection-v0”
赛车道——“racetrack-v0”
详细文档可以参考这里:
https://highway-env.readthedocs.io/en/latest/
安装好后即可在代码中进行实验(以高速公路场景为例):
- import gym
- import highway_env
- %matplotlib inline
-
- env = gym.make('highway-v0')
- env.reset()
- for _ in range(3):
- action = env.action_type.actions_indexes["IDLE"]
- obs, reward, done, info = env.step(action)
- env.render()
运行后会在模拟器中生成如下场景:
env类有很多参数可以配置,具体可以参考原文档。
1、数据处理
(1)state
highway-env包中没有定义传感器,车辆所有的state (observations) 都从底层代码读取,节省了许多前期的工作量。根据文档介绍,state (ovservations) 有三种输出方式:Kinematics,Grayscale Image和Occupancy grid。
Kinematics
输出V*F的矩阵,V代表需要观测的车辆数量(包括ego vehicle本身),F代表需要统计的特征数量。例:
数据生成时会默认归一化,取值范围:[100, 100, 20, 20],也可以设置ego vehicle以外的车辆属性是地图的绝对坐标还是对ego vehicle的相对坐标。
在定义环境时需要对特征的参数进行设定:
- config = \
- {
- "observation":
- {
- "type": "Kinematics",
- #选取5辆车进行观察(包括ego vehicle)
- "vehicles_count": 5,
- #共7个特征
- "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],
- "features_range":
- {
- "x": [-100, 100],
- "y": [-100, 100],
- "vx": [-20, 20],
- "vy": [-20, 20]
- },
- "absolute": False,
- "order": "sorted"
- },
- "simulation_frequency": 8, # [Hz]
- "policy_frequency": 2, # [Hz]
- }
Grayscale Image
生成一张W*H的灰度图像,W代表图像宽度,H代表图像高度
Occupancy grid
生成一个WHF的三维矩阵,用W*H的表格表示ego vehicle周围的车辆情况,每个格子包含F个特征。
(2) action
highway-env包中的action分为连续和离散两种。连续型action可以直接定义throttle和steering angle的值,离散型包含5个meta actions:
- ACTIONS_ALL = {
- 0: 'LANE_LEFT',
- 1: 'IDLE',
- 2: 'LANE_RIGHT',
- 3: 'FASTER',
- 4: 'SLOWER'
- }
(3) reward
highway-env包中除了泊车场景外都采用同一个reward function:
这个function只能在其源码中更改,在外层只能调整权重。
(泊车场景的reward function原文档里有)
2、搭建模型
DQN网络,我采用第一种state表示方式——Kinematics进行示范。由于state数据量较小(5辆车*7个特征),可以不考虑使用CNN,直接把二维数据的size[5,7]转成[1,35]即可,模型的输入就是35,输出是离散action数量,共5个。
- import torch
- import torch.nn as nn
- from torch.autograd import Variable
- import torch.nn.functional as F
- import torch.optim as optim
- import torchvision.transforms as T
- from torch import FloatTensor, LongTensor, ByteTensor
- from collections import namedtuple
- import random
- Tensor = FloatTensor
-
- EPSILON = 0 # epsilon used for epsilon greedy approach
- GAMMA = 0.9
- TARGET_NETWORK_REPLACE_FREQ = 40 # How frequently target netowrk updates
- MEMORY_CAPACITY = 100
- BATCH_SIZE = 80
- LR = 0.01 # learning rate
-
- class DQNNet(nn.Module):
- def __init__(self):
- super(DQNNet,self).__init__()
- self.linear1 = nn.Linear(35,35)
- self.linear2 = nn.Linear(35,5)
- def forward(self,s):
- s=torch.FloatTensor(s)
- s = s.view(s.size(0),1,35)
- s = self.linear1(s)
- s = self.linear2(s)
- return s
-
- class DQN(object):
- def __init__(self):
- self.net,self.target_net = DQNNet(),DQNNet()
- self.learn_step_counter = 0
- self.memory = []
- self.position = 0
- self.capacity = MEMORY_CAPACITY
- self.optimizer = torch.optim.Adam(self.net.parameters(), lr=LR)
- self.loss_func = nn.MSELoss()
-
- def choose_action(self,s,e):
- x=np.expand_dims(s, axis=0)
- if np.random.uniform() < 1-e:
- actions_value = self.net.forward(x)
- action = torch.max(actions_value,-1)[1].data.numpy()
- action = action.max()
- else:
- action = np.random.randint(0, 5)
- return action
-
- def push_memory(self, s, a, r, s_):
- if len(self.memory) < self.capacity:
- self.memory.append(None)
- self.memory[self.position] = Transition(torch.unsqueeze(torch.FloatTensor(s), 0),torch.unsqueeze(torch.FloatTensor(s_), 0),\
- torch.from_numpy(np.array([a])),torch.from_numpy(np.array([r],dtype='float32')))#
- self.position = (self.position + 1) % self.capacity
-
- def get_sample(self,batch_size):
- sample = random.sample(self.memory,batch_size)
- return sample
-
- def learn(self):
- if self.learn_step_counter % TARGET_NETWORK_REPLACE_FREQ == 0:
- self.target_net.load_state_dict(self.net.state_dict())
- self.learn_step_counter += 1
-
- transitions = self.get_sample(BATCH_SIZE)
- batch = Transition(*zip(*transitions))
-
- b_s = Variable(torch.cat(batch.state))
- b_s_ = Variable(torch.cat(batch.next_state))
- b_a = Variable(torch.cat(batch.action))
- b_r = Variable(torch.cat(batch.reward))
-
- q_eval = self.net.forward(b_s).squeeze(1).gather(1,b_a.unsqueeze(1).to(torch.int64))
- q_next = self.target_net.forward(b_s_).detach() #
- q_target = b_r + GAMMA * q_next.squeeze(1).max(1)[0].view(BATCH_SIZE, 1).t()
- loss = self.loss_func(q_eval, q_target.t())
- self.optimizer.zero_grad() # reset the gradient to zero
- loss.backward()
- self.optimizer.step() # execute back propagation for one step
- return loss
- Transition = namedtuple('Transition',('state', 'next_state','action', 'reward'))
3、运行结果
各个部分都完成之后就可以组合在一起训练模型了,流程和用CARLA差不多,就不细说了。
初始化环境(DQN的类加进去就行了):
- import gym
- import highway_env
- from matplotlib import pyplot as plt
- import numpy as np
- import time
- config = \
- {
- "observation":
- {
- "type": "Kinematics",
- "vehicles_count": 5,
- "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],
- "features_range":
- {
- "x": [-100, 100],
- "y": [-100, 100],
- "vx": [-20, 20],
- "vy": [-20, 20]
- },
- "absolute": False,
- "order": "sorted"
- },
- "simulation_frequency": 8, # [Hz]
- "policy_frequency": 2, # [Hz]
- }
-
- env = gym.make("highway-v0")
- env.configure(config)
训练模型:
- dqn=DQN()
- count=0
-
- reward=[]
- avg_reward=0
- all_reward=[]
-
- time_=[]
- all_time=[]
-
- collision_his=[]
- all_collision=[]
- while True:
- done = False
- start_time=time.time()
- s = env.reset()
-
- while not done:
- e = np.exp(-count/300) #随机选择action的概率,随着训练次数增多逐渐降低
- a = dqn.choose_action(s,e)
- s_, r, done, info = env.step(a)
- env.render()
-
- dqn.push_memory(s, a, r, s_)
-
- if ((dqn.position !=0)&(dqn.position % 99==0)):
- loss_=dqn.learn()
- count+=1
- print('trained times:',count)
- if (count%40==0):
- avg_reward=np.mean(reward)
- avg_time=np.mean(time_)
- collision_rate=np.mean(collision_his)
-
- all_reward.append(avg_reward)
- all_time.append(avg_time)
- all_collision.append(collision_rate)
-
- plt.plot(all_reward)
- plt.show()
- plt.plot(all_time)
- plt.show()
- plt.plot(all_collision)
- plt.show()
-
- reward=[]
- time_=[]
- collision_his=[]
-
- s = s_
- reward.append(r)
-
- end_time=time.time()
- episode_time=end_time-start_time
- time_.append(episode_time)
-
- is_collision=1 if info['crashed']==True else 0
- collision_his.append(is_collision)
我在代码中添加了一些画图的函数,在运行过程中就可以掌握一些关键的指标,每训练40次统计一次平均值。
平均碰撞发生率:
epoch平均时长(s):
平均reward:
可以看出平均碰撞发生率会随训练次数增多逐渐降低,每个epoch持续的时间会逐渐延长(如果发生碰撞epoch会立刻结束)
相比于模拟器CARLA,highway-env环境包明显更加抽象化,用类似游戏的表示方式,使得算法可以在一个理想的虚拟环境中得到训练,而不用考虑数据获取方式、传感器精度、运算时长等现实问题。对于端到端的算法设计和测试非常友好,但从自动控制的角度来看,可以入手的方面较少,研究起来不太灵活。
千锋教育Python全套视频教程,轻松掌握Excel、Word、PPT、邮件、爬虫、office办公自动化(宋如宁主讲)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。