当前位置:   article > 正文

数据结构_时间复杂度

数据结构_时间复杂度

✨✨所属专栏:数据结构✨✨

✨✨作者主页:嶔某✨✨

什么是时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

如何计算时间复杂度?

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

  1. void func1(int n)
  2. {
  3. int count = 0;
  4. for (int i = 0; i < n; i++)
  5. {
  6. for (int j = 0; j < n; j++)
  7. {
  8. count++;
  9. }
  10. }
  11. for (int k = 0; k < 2*n; k++)
  12. {
  13. count++;
  14. }
  15. int x = 10;
  16. while (x--)
  17. {
  18. count++;
  19. }
  20. printf("%d\n",count);
  21. }

在func1中count++执行了多少次?

答:F(n)= n^2 + 2*n +10

 在上面的问题中:

NF(N)
10130
10010210
10001002010

我们发现,当n越来越大,对最终结果最具有影响的项为:N^2(最高阶项)

有的同学会问:那如果n等于一个很小的数呢?(比如1,2,3……)

答:随着计算机的发展,由于计算机速度很快,当n很小的时候计算时间还不到1ms,可以忽略不计了。

 我们看下面的结果:(时间单位都为ms)

 所以我们在计算时间复杂读度的时候,只保留对结果影响最大的一项。

具体计算方法看下面的大O渐近表示法。

 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(n)

 通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

计算冒泡排序的时间复杂度

  1. void BubbleSort(int* a, int n)
  2. {
  3. assert(a);
  4. for (size_t end = n; end > 0; --end)
  5. {
  6. int exchange = 0;
  7. for (size_t i = 1; i < end; ++i)
  8. {
  9. if (a[i-1] > a[i])
  10. {
  11. Swap(&a[i-1], &a[i]);//两数交换
  12. exchange = 1;
  13. }
  14. }
  15. if (exchange == 0)
  16. break;
  17. }
  18. }

基本操作执行最好情况N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
坏,时间复杂度为 O(N^2)

注意:最坏情况展开是:(n^2)/2 + n/2 我们选最高次项(n^2)/2,这里前面的因数1/2直接舍去(对结果影响不大)

计算二分查找的时间复杂度 

  1. int BinarySearch(int* a, int n, int x)
  2. {
  3. assert(a);
  4. int begin = 0;
  5. int end = n-1;
  6. // [begin, end]:begin和end是左闭右闭区间,因此有=号
  7. while (begin <= end)
  8. {
  9. int mid = begin + ((end-begin)>>1);
  10. if (a[mid] < x)
  11. begin = mid+1;
  12. else if (a[mid] > x)
  13. end = mid-1;
  14. else
  15. return mid;
  16. }
  17. return -1;
  18. }

基本操作执行最好1次(中间数即为要查找的数),最坏O(logN)次(直到最后一次查找才查找出来),时间复杂度为 O(logN)。(logN在算法分析中表示是底数为2)

为什么最坏是log(n)次?

答:假设最坏查找x次,一共N个数,每次查找都要除去1/2的数,最后仅剩一个数,就有N((1/2)^x )= 1。化简取对数得x = log(N).

计算阶乘递归Fac的时间复杂度

  1. long long Fac(size_t N)
  2. {
  3. if(0 == N)
  4. return 1;
  5. return Fac(N-1)*N;
  6. }

 基本操作递归执行了N次(每一次调用函数都需要前一个函数的基础,直到调用到fac(1)停止),时间复杂度为O(N)

计算斐波那契递归Fib的时间复杂度

  1. long long Fib(size_t N)
  2. {
  3. if(N < 3)
  4. return 1;
  5. return Fib(N-1) + Fib(N-2);
  6. }

基本操作递归执行了2^N次(每一次调用都需要前面两个函数的值为基础,类似于杨辉三角)时间复杂度为O(2^N)

本期博客到这里就结束了,如果有什么错误,欢迎指出,如果对你有帮助,请点个赞,谢谢!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/497171
推荐阅读
相关标签
  

闽ICP备14008679号