赞
踩
马云说:“员工离职的原因总是只有两个:钱,没有到位;心委屈了。”
(点击文末“阅读原文”获取完整代码数据)。
相关视频
现在很多老板都抱怨说,年轻人的流动率太高了,员工觉得老板的钱太少了,最后还是多指责。
到底如何解决这个困境?拓端数据tecdat使用数据分析员工离开的原因,希望能从中找到线索。
我们搜集的数据包含:
l能力评估
l项目数量
l平均每月工作时间/小时
l花在公司的时间
l是否有工作意外
l是否在过去5年里进行了推广
l部门
l薪水
l员工是否离开
为了判断哪些员工做出了较大贡献,我们需要得到一个判断的规则.
因此在这里我们将使用evaluation来代表哪些员工作出贡献的衡量标准,
为了得到判断的规则,我们要使用决策树模型.
决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。
然后我们需要evaluation作为决策树的因变量,将其他的员工特征作为输入变量,然后我们可以得到决策树的规则,从而判断哪些变量可以判断员工作出了贡献
点击标题查阅往期内容
数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
左右滑动查看更多
01
02
03
04
从上面的结果来看,我们可以看到树的节点有平均工作时间,在公司所花的时间,满意程度,这几个变量.因此我们可以通过这些变量来判断一个人供是否对公司做出了贡献.从第一个节点我们可以看到,如果每月的平均工作小时小于零一百六十个小时的话,那么他的贡献,在78%左右,也就是平均贡献非常低.如果工作时间大于160个小时,我们要看他在公司所花的时间.如果公司所花的时间大于3.5.那么他对公司做出的贡献在81%左右.如果在公司所花的时间不足3.5.那么我们就要判断他对公司的满意程度.因此从上面的结果中我们可以看到,在公司所花的时间越多,那么这个人对公司的贡献可能略大,公司的满意程度较低,,说明他认为公司的可提高空间还很大,因此他对公司的贡献也会较大.
然后我们是用同样的方法来判断哪些原因会导致员工的离职,在这里我们使用员工是否离职作为因变量.
我们查看模型的结果
从结果中,我们可以看到有一些变量重复的出现,比如对公司的满意程度,在公司所花的时间所做的工程数量,最后的评估结果.因此可以认为这些变量对员工是否离职产生了重要的影响.
同时我们还可以得到对员工是否离职的影响的一个决策树方程
从上面的结果来看,我们可以发现,系数如果是负的那么说明这个,这个变量对于是否离职有负相关的作用,如果系数是正的,那么这个变量对员工是否与此产生了正相关的作用.那么从上面的结果中我们就可以看到,如果一个员工对公司的满意程度越高,那么他离职的可能性就越小,如果一个员工最后的评估成绩越高,那么他离职的可能性也越小,如果他做过的项目数量越多,那么他离职的可能性也越小,同时我们可以看到,如果他的薪水较低,那么他离职的可能性就越大.同时我们还可以看到,一个人的岗位,还有他平均的工作时间,对她是否离职似乎没有影响.
那么是否可以通过升职加薪的方式挽留作出贡献的员工呢?
从上面的方程来看,答案是肯定的.
因为一个人的薪水越低,那么他离职的可能性就越高,因此如果增加一个人的薪水,那么会降低他的离职概率.同时从系数的大小我们还可以判断,如果一个人的职位是i t部门那么他的离职可能性会较小。同时我们可以看到,如果公司对它的最后评估越高,那么他离职的可能性也越小,因此我们可以通过升职加薪的方式来挽留作出贡献的员工。
提高教育水平,使年轻人具有中产阶级价值观和更高的自我期望。但高等教育的普及也导致了中产阶级价值实行变得困难。这就像能买得起票的人变得更多,结果不是每个人都可以上车。因此,有时我们要调整对工作的预期,做好眼前的事情。
点击文末“阅读原文”
获取全文完整代码数据资料。
本文选自《R语言、WEKA从数据角度看员工为什么离职?》。
点击标题查阅往期内容
R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析
R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者
R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险
R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
R语言用线性模型进行臭氧预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值
R语言Bootstrap的岭回归和自适应LASSO回归可视化
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据
R语言建立和可视化混合效应模型mixed effect model
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)
R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据
R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
R语言使用Metropolis- Hasting抽样算法进行逻辑回归
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言基于树的方法:决策树,随机森林,Bagging,增强树
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。