赞
踩
Date | Author | Version | Note |
---|---|---|---|
2021.03.15 | Dog Tao | V1.0 | 整理后发表。 |
2023.11.10 | Dog Tao | V1.1 | 1. 调用Py_SetPythonHome 函数指定python库与解释器的路径。 2. 增加应用程序打包部署的相关说明。 |
作为一种胶水语言,Python 能够很容易地调用 C 、 C++ 等语言,也能够通过其他语言调用 Python 的模块。Python 提供了 C++ 库,使得开发者能很方便地从 C++ 程序中调用 Python 模块。
值得注意的是,Windows平台下的Python提供的静态库接口只支持MSVC编译器。
参考的资料:
Python 模块的源码示例:
# -*- coding: utf-8 -*- ' a module for alwhales data fit project ' __author__ = 'Dog Tao' import sys # 根据不同的开发环境设置对应的外部模块的路径 sys.path.append('E:\\Working\\PythonDev\\DataFitting\\venv\Lib\\site-packages') import numpy as np import matplotlib.pyplot as plt from pylab import mpl from scipy import interpolate from scipy.optimize import curve_fit mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决负数坐标显示问题 def polynomial_fitting(x_series, y_series, deg=3): """ 多项式拟合方法 :param x_series: x series of data point :param y_series: y series of data point :param deg: order of polynomial :return: list type of polynomial fit parameters """ return np.polyfit(x_series, y_series, deg) def interpolate_linear(x_series, y_series, x_fit_series): """ 线性插值拟合 :param x_series: x series of data point :param y_series: y series of data point :param x_fit_series: new series of x to fit b_spline :return: list type of linear fit callable object """ f_linear = interpolate.interp1d(x_series, y_series) return f_linear(x_fit_series) def interpolate_b_spline(x_series, y_series, x_fit_series): """ B样条曲线插值 :param x_series: x series of data point :param y_series: y series of data point :param x_fit_series: new series of x to fit b_spline :return: y series of fit data """ tck = interpolate.splrep(x_series, y_series) return interpolate.splev(x_fit_series, tck, 0) def func_4PL(x, a, b, c, d): """ 四参数模式为Y=(a-d)/[1+(x/c)^b]+d, 目前最常用与免疫检测领域,用于描述吸光度随抗原浓度变化的规律 :param x: value :param a: 曲线上渐近线估值 :param b: 曲线下渐近线估值 :param c: 曲线的斜率 :param d: 最大结合一半时对应的剂量 :return: y value ""
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。