赞
踩
时序预测 | Python实现ARIMA-LSTM差分自回归移动平均模型结合长短期记忆神经网络时间序列预测
直接替换数据即可用 适合新手小白
附赠案例数据 可直接运行
import itertools import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from numpy import concatenate from pandas import concat, DataFrame from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.preprocessing import MinMaxScaler from tensorflow.python.keras import Sequential from tensorflow.python.keras.layers import LSTM, Dropout, Dense from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import seaborn as sns from statsmodels.graphics.api import qqplot import statsmodels.tsa.stattools as st import statsmodels.api as sm import statsmodels.formula.api as smf import statsmodels.tsa.api as smt import matplotlib import warnings import statsmodels from scipy import stats import tensorflow as tf
[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。