赞
踩
目录
安装2.5.2识别结果为空
pip install paddlepaddle-gpu==2.6.1
测试代码:
-
- import os
- import time
- from paddleocr import PaddleOCR
-
- filepath = r"weights/123.jpg"
-
- ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,
- det_db_box_thresh=0.1, use_dilation=True,
- det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',
- cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',
- rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')
-
- t1 = time.time()
- for i in range(1):
- result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
- t2 = time.time()
- print((t2-t1) / 10)
-
- for res_str in result:
- print(res_str)
- import codecs
- import os
- import time
-
- import cv2
- import numpy as np
- from PIL import ImageFont
- from PIL import Image
- from PIL import ImageDraw
-
- from paddleocr import PaddleOCR
-
- filepath = r"weights/124.jpg"
-
- ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,
- det_db_box_thresh=0.1, use_dilation=True,
- det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',
- cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',
- rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')
-
- t1 = time.time()
- for i in range(1):
- result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
- t2 = time.time()
- print((t2-t1) / 10)
-
- font_path = 'simhei.ttf' # 需要替换为你的中文字体路径
- font = ImageFont.truetype(font_path, 24)
- def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):
- img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- draw = ImageDraw.Draw(img)
- draw.text(position, text, textColor, font=font)
- return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
-
- image=cv2.imread(filepath)
-
- ocr_index=0
- for res_str in result:
- if res_str[0][0][0]>36 and res_str[0][2][0]<84:
- print(ocr_index,res_str)
- points=res_str[0]
- text = res_str[1][0]
- points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
- cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
- text_position = (int(points[0][0][0]), int(points[0][0][1] + 20)) # 微调文本位置
-
- # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
- image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
- print(ocr_index)
- if res_str[0][0][0]>346 and res_str[0][2][0]<391:
- print(ocr_index,res_str)
- points=res_str[0]
- text = res_str[1][0]
- points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
- cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
- text_position = (int(points[0][0][0]), int(points[0][0][1] + 20)) # 微调文本位置
-
- # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
- image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
- if res_str[0][0][0]>658 and res_str[0][2][0]<705:
- print(ocr_index,res_str)
- points=res_str[0]
- text=res_str[1][0]
- points=np.array(points,dtype=np.int32).reshape((-1, 1, 2))
- cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
- text_position = (int(points[0][0][0]), int(points[0][0][1] + 20)) # 微调文本位置
- image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
-
- cv2.imshow('Image with Rectangle and Text', image)
- cv2.waitKey(0)
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import os
- import sys
- import importlib
-
- __dir__ = os.path.dirname(__file__)
-
- import paddle
- from paddle.utils import try_import
-
- sys.path.append(os.path.join(__dir__, ""))
-
- import cv2
- import logging
- import numpy as np
- from pathlib import Path
- import base64
- from io import BytesIO
- from PIL import Image, ImageFont, ImageDraw
- from tools.infer import predict_system
-
-
- def _import_file(module_name, file_path, make_importable=False):
- spec = importlib.util.spec_from_file_location(module_name, file_path)
- module = importlib.util.module_from_spec(spec)
- spec.loader.exec_module(module)
- if make_importable:
- sys.modules[module_name] = module
- return module
-
-
- tools = _import_file("tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True)
- ppocr = importlib.import_module("ppocr", "paddleocr")
- ppstructure = importlib.import_module("ppstructure", "paddleocr")
- from ppocr.utils.logging import get_logger
-
- logger = get_logger()
- from ppocr.utils.utility import (check_and_read, get_image_file_list, alpha_to_color, binarize_img, )
- from ppocr.utils.network import (maybe_download, download_with_progressbar, is_link, confirm_model_dir_url, )
- from tools.infer.utility import draw_ocr, str2bool, check_gpu
- from ppstructure.utility import init_args, draw_structure_result
- from ppstructure.predict_system import StructureSystem, save_structure_res, to_excel
-
- logger = get_logger()
- __all__ = ["PaddleOCR", "PPStructure", "draw_ocr", "draw_structure_result", "save_structure_res", "download_with_progressbar", "to_excel", ]
-
- SUPPORT_DET_MODEL = ["DB"]
- VERSION = "2.8.0"
- SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
- BASE_DIR = os.path.expanduser("~/.paddleocr/")
-
- DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
- SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
- DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
- SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
- MODEL_URLS = {"OCR": {"PP-OCRv4": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },
- "ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },
- "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
- "korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
- "japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
- "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
- "ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
- "te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
- "ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
- "latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
- "arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
- "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
- "devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },
- "PP-OCRv3": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },
- "ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },
- "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
- "korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
- "japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
- "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
- "ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
- "te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
- "ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
- "latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
- "arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
- "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
- "devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },
- "PP-OCRv2": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar", }, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }},
- "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, "PP-OCR": {
- "det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar", },
- "structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"}, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", },
- "en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
- "french": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/french_dict.txt", },
- "german": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/german_dict.txt", },
- "korean": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
- "japan": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
- "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
- "ta": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
- "te": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
- "ka": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
- "latin": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
- "arabic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
- "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
- "devanagari": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", },
- "structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar", "dict_path": "ppocr/utils/dict/table_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, },
- "STRUCTURE": {"PP-Structure": {"table": {"en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", }}}, "PP-StructureV2": {
- "table": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", },
- "ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt", }, },
- "layout": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt", },
- "ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt", }, }, }, }, }
-
-
- def parse_args(mMain=True):
- import argparse
-
- parser = init_args()
- parser.add_help = mMain
- parser.add_argument("--lang", type=str, default="ch")
- parser.add_argument("--det", type=str2bool, default=True)
- parser.add_argument("--rec", type=str2bool, default=True)
- parser.add_argument("--type", type=str, default="ocr")
- parser.add_argument("--savefile", type=str2bool, default=False)
- parser.add_argument("--ocr_version", type=str, choices=SUPPORT_OCR_MODEL_VERSION, default="PP-OCRv4", help="OCR Model version, the current model support list is as follows: "
- "1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model"
- "2. PP-OCRv2 Support Chinese detection and recognition model. "
- "3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.", )
- parser.add_argument("--structure_version", type=str, choices=SUPPORT_STRUCTURE_MODEL_VERSION, default="PP-StructureV2", help="Model version, the current model support list is as follows:"
- " 1. PP-Structure Support en table structure model."
- " 2. PP-StructureV2 Support ch and en table structure model.", )
-
- for action in parser._actions:
- if action.dest in ["rec_char_dict_path", "table_char_dict_path", "layout_dict_path", ]:
- action.default = None
- if mMain:
- return parser.parse_args()
- else:
- inference_args_dict = {}
- for action in parser._actions:
- inference_args_dict[action.dest] = action.default
- return argparse.Namespace(**inference_args_dict)
-
-
- def parse_lang(lang):
- latin_lang = ["af", "az", "bs", "cs", "cy", "da", "de", "es", "et", "fr", "ga", "hr", "hu", "id", "is", "it", "ku", "la", "lt", "lv", "mi", "ms", "mt", "nl", "no", "oc", "pi", "pl", "pt", "ro", "rs_latin", "sk", "sl", "sq", "sv", "sw", "tl", "tr", "uz", "vi", "french", "german", ]
- arabic_lang = ["ar", "fa", "ug", "ur"]
- cyrillic_lang = ["ru", "rs_cyrillic", "be", "bg", "uk", "mn", "abq", "ady", "kbd", "ava", "dar", "inh", "che", "lbe", "lez", "tab", ]
- devanagari_lang = ["hi", "mr", "ne", "bh", "mai", "ang", "bho", "mah", "sck", "new", "gom", "sa", "bgc", ]
- if lang in latin_lang:
- lang = "latin"
- elif lang in arabic_lang:
- lang = "arabic"
- elif lang in cyrillic_lang:
- lang = "cyrillic"
- elif lang in devanagari_lang:
- lang = "devanagari"
- assert (lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]), "param lang must in {}, but got {}".format(MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang)
- if lang == "ch":
- det_lang = "ch"
- elif lang == "structure":
- det_lang = "structure"
- elif lang in ["en", "latin"]:
- det_lang = "en"
- else:
- det_lang = "ml"
- return lang, det_lang
-
-
- def get_model_config(type, version, model_type, lang):
- if type == "OCR":
- DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSION
- elif type == "STRUCTURE":
- DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSION
- else:
- raise NotImplementedError
-
- model_urls = MODEL_URLS[type]
- if version not in model_urls:
- version = DEFAULT_MODEL_VERSION
- if model_type not in model_urls[version]:
- if model_type in model_urls[DEFAULT_MODEL_VERSION]:
- version = DEFAULT_MODEL_VERSION
- else:
- logger.error("{} models is not support, we only support {}".format(model_type, model_urls[DEFAULT_MODEL_VERSION].keys()))
- sys.exit(-1)
-
- if lang not in model_urls[version][model_type]:
- if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:
- version = DEFAULT_MODEL_VERSION
- else:
- logger.error("lang {} is not support, we only support {} for {} models".format(lang, model_urls[DEFAULT_MODEL_VERSION][model_type].keys(), model_type, ))
- sys.exit(-1)
- return model_urls[version][model_type][lang]
-
-
- def img_decode(content: bytes):
- np_arr = np.frombuffer(content, dtype=np.uint8)
- return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
-
-
- def check_img(img, alpha_color=(255, 255, 255)):
- """
- Check the image data. If it is another type of image file, try to decode it into a numpy array.
- The inference network requires three-channel images, So the following channel conversions are done
- single channel image: Gray to RGB R←Y,G←Y,B←Y
- four channel image: alpha_to_color
- args:
- img: image data
- file format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formats
- storage type: binary image, net image file, local image file
- alpha_color: Background color in images in RGBA format
- return: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean
- """
- flag_gif, flag_pdf = False, False
- if isinstance(img, bytes):
- img = img_decode(img)
- if isinstance(img, str):
- # download net image
- if is_link(img):
- download_with_progressbar(img, "tmp.jpg")
- img = "tmp.jpg"
- image_file = img
- img, flag_gif, flag_pdf = check_and_read(image_file)
- if not flag_gif and not flag_pdf:
- with open(image_file, "rb") as f:
- img_str = f.read()
- img = img_decode(img_str)
- if img is None:
- try:
- buf = BytesIO()
- image = BytesIO(img_str)
- im = Image.open(image)
- rgb = im.convert("RGB")
- rgb.save(buf, "jpeg")
- buf.seek(0)
- image_bytes = buf.read()
- data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")
- image_decode = base64.b64decode(data_base64)
- img_array = np.frombuffer(image_decode, np.uint8)
- img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
- except:
- logger.error("error in loading image:{}".format(image_file))
- return None, flag_gif, flag_pdf
- if img is None:
- logger.error("error in loading image:{}".format(image_file))
- return None, flag_gif, flag_pdf
- # single channel image array.shape:h,w
- if isinstance(img, np.ndarray) and len(img.shape) == 2:
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- # four channel image array.shape:h,w,c
- if isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:
- img = alpha_to_color(img, alpha_color)
- return img, flag_gif, flag_pdf
-
-
- class PaddleOCR(predict_system.TextSystem):
- def __init__(self, **kwargs):
- """
- paddleocr package
- args:
- **kwargs: other params show in paddleocr --help
- """
- params = parse_args(mMain=False)
- params.__dict__.update(**kwargs)
- assert (params.ocr_version in SUPPORT_OCR_MODEL_VERSION), "ocr_version must in {}, but get {}".format(SUPPORT_OCR_MODEL_VERSION, params.ocr_version)
- params.use_gpu = check_gpu(params.use_gpu)
-
- if not params.show_log:
- logger.setLevel(logging.INFO)
- self.use_angle_cls = params.use_angle_cls
- lang, det_lang = parse_lang(params.lang)
-
- # init model dir
- det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
- params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )
- rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
- params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )
- cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")
- params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir, os.path.join(BASE_DIR, "whl", "cls"), cls_model_config["url"], )
- if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:
- params.rec_image_shape = "3, 48, 320"
- else:
- params.rec_image_shape = "3, 32, 320"
- # download model if using paddle infer
- if not params.use_onnx:
- maybe_download(params.det_model_dir, det_url)
- maybe_download(params.rec_model_dir, rec_url)
- maybe_download(params.cls_model_dir, cls_url)
-
- if params.det_algorithm not in SUPPORT_DET_MODEL:
- logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))
- sys.exit(0)
- if params.rec_algorithm not in SUPPORT_REC_MODEL:
- logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))
- sys.exit(0)
-
- if params.rec_char_dict_path is None:
- params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])
-
- logger.debug(params)
- # init det_model and rec_model
- super().__init__(params)
- self.page_num = params.page_num
-
- def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, alpha_color=(255, 255, 255), ):
- """
- OCR with PaddleOCR
- args:
- img: img for OCR, support ndarray, img_path and list or ndarray
- det: use text detection or not. If False, only rec will be exec. Default is True
- rec: use text recognition or not. If False, only det will be exec. Default is True
- cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
- bin: binarize image to black and white. Default is False.
- inv: invert image colors. Default is False.
- alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
- """
- assert isinstance(img, (np.ndarray, list, str, bytes))
- if isinstance(img, list) and det == True:
- logger.error("When input a list of images, det must be false")
- exit(0)
- if cls == True and self.use_angle_cls == False:
- logger.warning("Since the angle classifier is not initialized, it will not be used during the forward process")
-
- img, flag_gif, flag_pdf = check_img(img, alpha_color)
- # for infer pdf file
- if isinstance(img, list) and flag_pdf:
- if self.page_num > len(img) or self.page_num == 0:
- imgs = img
- else:
- imgs = img[: self.page_num]
- else:
- imgs = [img]
-
- def preprocess_image(_image):
- _image = alpha_to_color(_image, alpha_color)
- if inv:
- _image = cv2.bitwise_not(_image)
- if bin:
- _image = binarize_img(_image)
- return _image
-
- if det and rec:
- ocr_res = []
- for idx, img in enumerate(imgs):
- img = preprocess_image(img)
- dt_boxes, rec_res, _ = self.__call__(img, cls)
- if not dt_boxes and not rec_res:
- ocr_res.append(None)
- continue
- tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
- ocr_res.append(tmp_res)
- return ocr_res
- elif det and not rec:
- ocr_res = []
- for idx, img in enumerate(imgs):
- img = preprocess_image(img)
- dt_boxes, elapse = self.text_detector(img)
- if dt_boxes.size == 0:
- ocr_res.append(None)
- continue
- tmp_res = [box.tolist() for box in dt_boxes]
- ocr_res.append(tmp_res)
- return ocr_res
- else:
- ocr_res = []
- cls_res = []
- for idx, img in enumerate(imgs):
- if not isinstance(img, list):
- img = preprocess_image(img)
- img = [img]
- if self.use_angle_cls and cls:
- img, cls_res_tmp, elapse = self.text_classifier(img)
- if not rec:
- cls_res.append(cls_res_tmp)
- rec_res, elapse = self.text_recognizer(img)
- ocr_res.append(rec_res)
- if not rec:
- return cls_res
- return ocr_res
-
-
- class PPStructure(StructureSystem):
- def __init__(self, **kwargs):
- params = parse_args(mMain=False)
- params.__dict__.update(**kwargs)
- assert (params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION), "structure_version must in {}, but get {}".format(SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version)
- params.use_gpu = check_gpu(params.use_gpu)
- params.mode = "structure"
-
- if not params.show_log:
- logger.setLevel(logging.INFO)
- lang, det_lang = parse_lang(params.lang)
- if lang == "ch":
- table_lang = "ch"
- else:
- table_lang = "en"
- if params.structure_version == "PP-Structure":
- params.merge_no_span_structure = False
-
- # init model dir
- det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
- params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )
- rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
- params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )
- table_model_config = get_model_config("STRUCTURE", params.structure_version, "table", table_lang)
- params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir, os.path.join(BASE_DIR, "whl", "table"), table_model_config["url"], )
- layout_model_config = get_model_config("STRUCTURE", params.structure_version, "layout", lang)
- params.layout_model_dir, layout_url = confirm_model_dir_url(params.layout_model_dir, os.path.join(BASE_DIR, "whl", "layout"), layout_model_config["url"], )
- # download model
- if not params.use_onnx:
- maybe_download(params.det_model_dir, det_url)
- maybe_download(params.rec_model_dir, rec_url)
- maybe_download(params.table_model_dir, table_url)
- maybe_download(params.layout_model_dir, layout_url)
-
- if params.rec_char_dict_path is None:
- params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])
- if params.table_char_dict_path is None:
- params.table_char_dict_path = str(Path(__file__).parent / table_model_config["dict_path"])
- if params.layout_dict_path is None:
- params.layout_dict_path = str(Path(__file__).parent / layout_model_config["dict_path"])
- logger.debug(params)
- super().__init__(params)
-
- def __call__(self, img, return_ocr_result_in_table=False, img_idx=0, alpha_color=(255, 255, 255), ):
- img, flag_gif, flag_pdf = check_img(img, alpha_color)
- if isinstance(img, list) and flag_pdf:
- res_list = []
- for index, pdf_img in enumerate(img):
- logger.info("processing {}/{} page:".format(index + 1, len(img)))
- res, _ = super().__call__(pdf_img, return_ocr_result_in_table, img_idx=index)
- res_list.append(res)
- return res_list
- res, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)
- return res
- def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):
- img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- draw = ImageDraw.Draw(img)
- draw.text(position, text, textColor, font=font)
- return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
-
- if __name__ == '__main__':
-
- font_path = 'simhei.ttf' # 需要替换为你的中文字体路径
- font = ImageFont.truetype(font_path, 24)
-
-
- # for cmd
- args = parse_args(mMain=True)
- image_dir = args.image_dir
- image_file_list=['weights/123.jpg']
- if args.type == "ocr":
- engine = PaddleOCR(**(args.__dict__))
- elif args.type == "structure":
- engine = PPStructure(**(args.__dict__))
- else:
- raise NotImplementedError
-
- for img_path in image_file_list:
- img_name = os.path.basename(img_path).split(".")[0]
- logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))
- if args.type == "ocr":
- image=cv2.imread(img_path)
- result = engine.ocr(img_path, det=args.det, rec=args.rec, cls=args.use_angle_cls, bin=args.binarize, inv=args.invert, alpha_color=args.alphacolor, )
- if result is not None:
- lines = []
- for idx in range(len(result)):
- res = result[idx]
- for line in res:
-
- points = line[0]
- text = line[1][0]
- points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
- cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
- text_position = (int(points[0][0][0]), int(points[0][0][1] + 20)) # 微调文本位置
-
- # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
- image = cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
-
- logger.info(line)
- val = "["
- for box in line[0]:
- val += str(box[0]) + "," + str(box[1]) + ","
-
- val = val[:-1]
- val += "]," + line[1][0] + "," + str(line[1][1]) + "\n"
- lines.append(val)
- if args.savefile:
- if os.path.exists(args.output) is False:
- os.mkdir(args.output)
- outfile = args.output + "/" + img_name + ".txt"
- with open(outfile, "w", encoding="utf-8") as f:
- f.writelines(lines)
-
- elif args.type == "structure":
- img, flag_gif, flag_pdf = check_and_read(img_path)
- if not flag_gif and not flag_pdf:
- img = cv2.imread(img_path)
-
- if not flag_pdf:
- if img is None:
- logger.error("error in loading image:{}".format(img_path))
- continue
- img_paths = [[img_path, img]]
- else:
- img_paths = []
- for index, pdf_img in enumerate(img):
- os.makedirs(os.path.join(args.output, img_name), exist_ok=True)
- pdf_img_path = os.path.join(args.output, img_name, img_name + "_" + str(index) + ".jpg")
- cv2.imwrite(pdf_img_path, pdf_img)
- img_paths.append([pdf_img_path, pdf_img])
-
- all_res = []
- for index, (new_img_path, img) in enumerate(img_paths):
- logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))
- new_img_name = os.path.basename(new_img_path).split(".")[0]
- result = engine(img, img_idx=index)
- save_structure_res(result, args.output, img_name, index)
-
- if args.recovery and result != []:
- from copy import deepcopy
- from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes
-
- h, w, _ = img.shape
- result_cp = deepcopy(result)
- result_sorted = sorted_layout_boxes(result_cp, w)
- all_res += result_sorted
-
- if args.recovery and all_res != []:
- try:
- from ppstructure.recovery.recovery_to_doc import convert_info_docx
-
- convert_info_docx(img, all_res, args.output, img_name)
- except Exception as ex:
- logger.error("error in layout recovery image:{}, err msg: {}".format(img_name, ex))
- continue
-
- for item in all_res:
- item.pop("img")
- item.pop("res")
- logger.info(item)
- logger.info("result save to {}".format(args.output))
-
- cv2.imshow('image', image)
- cv2.waitKey(0)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。