赞
踩
一、写在前面
之前,我们介绍了Sklearn包以及Boost辈的各种分类模型,这些模型都很经典了,实际上也很强大,比如说Xgboost。
然而,近期随着ChatGPT的大火,其底层框架Transformer也逐渐火了,现在大家朝着通用人工智能的方向靠拢。因此,我在想,尝试使用Transformer框架做一做临床诊断/预后问题(本质上就是分类问题),看看效果如何。
首先使用GPT简单科普Transformer框架:
二、尝鲜过程
实际上,我对于Transformer框架一概不知。所以,无脑求助GPT。
(1)用TA提供一个基础代码:
咒语:我有一个<临床数据>,其中“X1”列表示病人的预后(0表示生存,1表示死亡),其余列“X3”至“X19”表示临床自变量。
我需要写一个Transformer框架做分类的代码,使用“X3”至“X19”这17个自变量去预测“X1”,请用python帮我写出代码。
数据格式如下:
<
X1 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19
0 0 0 0 0 0 0 2.17 22 6.5 295 1.16 0.08 3.52 224 0.33 0 82.6
0 1 0 0 0 1 0 1.17 23 24.3 261 0.79 0.04 3.75 59 0.27 0.02 53.3
0 0 0 0 0 0 0 1.82 63.99 3.9 460.67 1.2 0.05 4.8 21 0.07 0 38.3
1 0 0 0 1 1 0 2.13 63.99 15.7 401.3 1.24 0.12 5.1 147 0.9 0.01 80.84
>
回复如下:
首先得安装PyTorch,具体安装教程就不说了。算了,还是说一下:
(a)打开Anaconda Prompt;
(b)打开Pytorch官网(https://pytorch.org/)寻找安装命令代码,根据自己的需求选择安装条件,比如我的LOW电脑没有GPU,只能用CPU;
(c)在Anaconda Prompt输入代码安装(记得切换好安装环境):
conda install pytorch torchvision torchaudio cpuonly -c pytorch
回车安装即可。
再附上GPT给的代码:
- import torch
-
- import torch.nn as nn
-
- import torch.optim as optim
-
- from sklearn.model_selection import train_test_split
-
- from sklearn.preprocessing import StandardScaler
-
- import pandas as pd
-
- import numpy as np
-
- # 加载数据
-
- data = pd.read_csv('your_data.csv') # 请用您数据的实际路径替换 'your_data.csv'
-
- X = data.loc[:, 'X3':'X19'].values
-
- y = data['X1'].values
-
- # 数据预处理
-
- scaler = StandardScaler()
-
- X = scaler.fit_transform(X)
-
- # 划分数据集
-
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
-
- # 创建PyTorch数据加载器
-
- train_data = torch.utils.data.TensorDataset(torch.Tensor(X_train), torch.Tensor(y_train))
-
- test_data = torch.utils.data.TensorDataset(torch.Tensor(X_test), torch.Tensor(y_test))
-
- train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)
-
- test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=True)
-
- # 定义设备
-
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
- # 创建Transformer模型
-
- class TransformerModel(nn.Module):
-
- def __init__(self, input_dim, output_dim, nhead=1):
-
- super(TransformerModel, self).__init__()
-
- self.encoder = nn.TransformerEncoder(
-
- nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),
-
- num_layers=3
-
- )
-
- self.classifier = nn.Linear(input_dim, output_dim)
-
- def forward(self, x):
-
- x = self.encoder(x)
-
- x = self.classifier(x)
-
- return x
-
- # 初始化模型和优化器
-
- model = TransformerModel(input_dim=X.shape[1], output_dim=2).to(device)
-
- optimizer = optim.Adam(model.parameters(), lr=0.001)
-
- criterion = nn.CrossEntropyLoss()
-
- # 训练模型
-
- for epoch in range(100):
-
- for i, (inputs, labels) in enumerate(train_loader):
-
- inputs, labels = inputs.to(device), labels.to(device)
-
-
-
- optimizer.zero_grad()
-
-
-
- outputs = model(inputs)
-
- loss = criterion(outputs, labels.long())
-
-
-
- loss.backward()
-
- optimizer.step()
-
- print(f'Epoch {epoch+1} / 100: Average Loss: {loss.item()}')
(2)模型需要计算性能参数
写咒语:我还需要做得出模型在训练集和测试集上的性能指标,包括灵敏度、特异度和AUC值,帮我更新代码。
TA又更新了代码(只显示更新的部分):
- # 训练模型
-
- for epoch in range(20):
-
- for i, (inputs, labels) in enumerate(train_loader):
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- optimizer.zero_grad()
-
- outputs = model(inputs)
-
- loss = criterion(outputs, labels.long())
-
- loss.backward()
-
- optimizer.step()
-
- # 验证模型
-
- model.eval()
-
- with torch.no_grad():
-
- # 训练集
-
- predictions = []
-
- truths = []
-
- for inputs, labels in train_loader:
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- output = model(inputs)
-
- _, predicted = torch.max(output.data, 1)
-
- predictions += predicted.tolist()
-
- truths += labels.tolist()
-
- tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
-
- sensitivity = tp / (tp + fn)
-
- specificity = tn / (tn + fp)
-
- auc = roc_auc_score(truths, predictions)
-
- #print(f'Epoch {epoch+1} / 100, Training: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')
-
- # 测试集
-
- predictions = []
-
- truths = []
-
- for inputs, labels in test_loader:
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- output = model(inputs)
-
- _, predicted = torch.max(output.data, 1)
-
- predictions += predicted.tolist()
-
- truths += labels.tolist()
-
- tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
-
- sensitivity = tp / (tp + fn)
-
- specificity = tn / (tn + fp)
-
- auc = roc_auc_score(truths, predictions)
-
- print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')
把数据带进去运行试试:
可以看到,应该还是有一些过拟合的现象。
(3)继续施咒,如何改善过拟合。
施咒:上述的代码运行后出现过拟合,如何改善?
总体的挺到位的。我们来看看:
数据量就不考虑了,我也想要更多数据。更简单的模型,说的有道理,不过现在是测试这个面模型的性能。早停法也不适合,因为从20次迭代来看,都是过拟合的,你怎么样TA停,同样,交叉验证也是不可行。所以,试试其他的办法。
(4)增加正则化。
咒语:如何在代码中增加正则化项,请帮我改写相关代码段。
然后我加进去了,没啥效果。这是L2正则化,然后又问了L1正则化:
同样效果也不明显。
(5)减少模型复杂度。
咒语:如何做到“减少编码器层的数量、减少自注意力机制的头数或降低前馈神经网络的隐藏单元数量”,请分别修改代码段展示。
GPT注意给了回复,这里我一起展示:
- # 创建Transformer模型
-
- class TransformerModel(nn.Module):
-
- def __init__(self, input_dim, output_dim, nhead=1):
-
- super(TransformerModel, self).__init__()
-
- self.encoder = nn.TransformerEncoder(
-
- nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),
-
- num_layers=int(0.5 * input_dim) # 减少层数
-
- )
-
- self.norm = nn.BatchNorm1d(input_dim) # 添加批归一化层
-
- self.classifier = nn.Linear(input_dim, output_dim)
-
- self.dropout = nn.Dropout(1) # 添加一个dropout层
然后,效果也是不明显。
看来过拟合不好解决,同时我们可以看到,Sensitivity都是比Specificity要小的,这也可以理解,因为这是一个不平衡数据(正比负是1:3),下一步考虑从这一点入手。
(6)处理不平衡数据。
咒语:Sensitivity远远比Specificity要小,请问如何改进代码?
我们来分析下:重采样就算了,尽量不要动原始数据。第三个看不懂。所以,试试改变阈值。
(7)改变阈值。
咒语:改代码中如何改变阈值?请修改相应代码段。
代码如下:
- # 验证模型
-
- model.eval()
-
- with torch.no_grad():
-
- # 测试集
-
- predictions = []
-
- truths = []
-
- for inputs, labels in test_loader:
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- output = model(inputs)
-
- # 将输出结果用 softmax 函数转换为概率
-
- probabilities = torch.nn.functional.softmax(output, dim=1)
-
- # 调整阈值,例如设定阈值为 0.3
-
- threshold = 0.3
-
- predicted = (probabilities[:, 1] > threshold).long()
-
- predictions += predicted.tolist()
-
- truths += labels.tolist()
-
- tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
-
- sensitivity = tp / (tp + fn)
-
- specificity = tn / (tn + fp)
-
- auc = roc_auc_score(truths, predictions)
-
- print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')
当然值变动了测试集,我们来试试效果,阈值改成0.3:
可以看到,特异度的份额被分到了灵敏度了,总体的AUC值变化不大。因此,性能基本上也就这样了。
最终的代码:
- import torch
-
- import torch.nn as nn
-
- import torch.optim as optim
-
- from sklearn.model_selection import train_test_split
-
- from sklearn.preprocessing import StandardScaler
-
- from sklearn.metrics import confusion_matrix, roc_auc_score
-
- import pandas as pd
-
- import numpy as np
-
-
-
- # 加载数据
-
- data = pd.read_csv('Entry model3.csv') # 请用您数据的实际路径替换 'your_data.csv'
-
- X = data.loc[:, 'X3':'X19'].values
-
- y = data['X1'].values
-
-
-
- # 数据预处理
-
- scaler = StandardScaler()
-
- X = scaler.fit_transform(X)
-
-
-
- # 划分数据集
-
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2338)
-
-
-
- # 创建PyTorch数据加载器
-
- train_data = torch.utils.data.TensorDataset(torch.Tensor(X_train), torch.Tensor(y_train))
-
- test_data = torch.utils.data.TensorDataset(torch.Tensor(X_test), torch.Tensor(y_test))
-
- train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)
-
- test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=True)
-
-
-
- # 定义设备
-
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
-
-
- # 创建Transformer模型
-
- class TransformerModel(nn.Module):
-
- def __init__(self, input_dim, output_dim, nhead=1):
-
- super(TransformerModel, self).__init__()
-
- self.encoder = nn.TransformerEncoder(
-
- nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),
-
- num_layers=int(0.5 * input_dim) # 减少层数
-
- )
-
- self.norm = nn.BatchNorm1d(input_dim) # 添加批归一化层
-
- self.classifier = nn.Linear(input_dim, output_dim)
-
- self.dropout = nn.Dropout(1) # 添加一个dropout层
-
-
-
-
-
- def forward(self, x):
-
- x = self.encoder(x)
-
- x = self.classifier(x)
-
- return x
-
-
-
-
-
- # 初始化模型和优化器
-
- model = TransformerModel(input_dim=X.shape[1], output_dim=2).to(device)
-
- optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-5)
-
-
-
- criterion = nn.CrossEntropyLoss()
-
-
-
- # 训练模型
-
- for epoch in range(20):
-
- for i, (inputs, labels) in enumerate(train_loader):
-
- inputs, labels = inputs.to(device), labels.to(device)
-
-
-
- optimizer.zero_grad()
-
-
-
- outputs = model(inputs)
-
- loss = criterion(outputs, labels.long())
-
-
-
- # 添加L1正则化
-
- #l1_lambda = 0.001
-
- #l1_norm = sum(p.abs().sum() for p in model.parameters())
-
- #loss = loss + l1_lambda * l1_norm
-
-
-
- loss.backward()
-
- optimizer.step()
-
-
-
- # 验证模型
-
- model.eval()
-
- with torch.no_grad():
-
- # 训练集
-
- predictions = []
-
- truths = []
-
- for inputs, labels in train_loader:
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- output = model(inputs)
-
- _, predicted = torch.max(output.data, 1)
-
- predictions += predicted.tolist()
-
- truths += labels.tolist()
-
-
-
- tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
-
- sensitivity = tp / (tp + fn)
-
- specificity = tn / (tn + fp)
-
- auc = roc_auc_score(truths, predictions)
-
- #print(f'Epoch {epoch+1} / 100, Training: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')
-
-
-
- # 测试集
-
- predictions = []
-
- truths = []
-
- for inputs, labels in test_loader:
-
- inputs, labels = inputs.to(device), labels.to(device)
-
- output = model(inputs)
-
- # 将输出结果用 softmax 函数转换为概率
-
- probabilities = torch.nn.functional.softmax(output, dim=1)
-
- # 调整阈值,例如设定阈值为 0.3
-
- threshold = 0.3
-
- predicted = (probabilities[:, 1] > threshold).long()
-
- predictions += predicted.tolist()
-
- truths += labels.tolist()
-
- tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
-
- sensitivity = tp / (tp + fn)
-
- specificity = tn / (tn + fp)
-
- auc = roc_auc_score(truths, predictions)
-
- print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')
三、总结
以上,Transformer框架能解决分类问题。不过在这个例子中,性能不太好,可能是因为数据量太小了吧(400多例而已)。反而,同样的数据,Xgboost略胜一筹(AUC:0.75),所以有时候,合适的模型才是最好的。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。