赞
踩
目录
论文题目:Deep Learning
论文地址:https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
DeepLearning 3大佬Yann LeCun, Yoshua Bengio & Geoffrey Hinton在Nature上发表的关于DeepLearning的综述文章。
论文题目:Gradient-Based Learning Applied to Document Recognition
论文地址:http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
第一个卷积神经网络
开源代码:
- class Lenet(nn.Module):
- def __init__(self, bool_bn=False, num_classes=10):
- super(Lenet, self).__init__()
- self.features = nn.Sequential(
- nn.Conv2d(3, 6, kernel_size=5),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- nn.Conv2d(6, 16, kernel_size=5),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- )
- self.features_bn = nn.Sequential(
- nn.Conv2d(3, 6, kernel_size=5),
- nn.BatchNorm2d(6),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- nn.Conv2d(6, 16, kernel_size=5),
- nn.BatchNorm2d(16),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
- )
- self.classifier = nn.Sequential(
- nn.Linear(16 * 5 * 5, 120),
- nn.ReLU(inplace=True),
- nn.Dropout(),
- nn.Linear(120, 84),
- nn.ReLU(inplace=True),
- nn.Dropout(),
- nn.Linear(84, num_classes),
- )
- self.bool_bn = bool_bn
-
- def forward(self, x):
- if self.bool_bn:
- x = self.features_bn(x)
- else:
- x = self.features(x)
- x = x.view(x.size(0), 16 * 5 * 5)
- x = self.classifier(x)
- return x
论文题目:Imagenet classification with deep convolutional neural networks
2012年ILSVRC分类比赛冠军
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
论文题目:Visualizing and Understanding Convolutional Networks
论文地址:https://arxiv.org/pdf/1311.2901.pdf
2013年ILSVRC分类比赛冠军
论文题目:Going deeper with convolutions
论文地址:https://arxiv.org/pdf/1409.4842v1.pdf
2014年ILSVRC分类比赛冠军
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/googlenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
论文题目:Rethinking the Inception Architecture for Computer Vision
论文地址:https://arxiv.org/pdf/1512.00567.pdf
Inception v2-v3
论文题目:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
论文地址:https://arxiv.org/pdf/1602.07261.pdf
Inception-v4, Inception-ResNet-v1, Inception-ResNet-v2
论文题目:Very Deep Convolutional Networks for Large-Scale Image Recognition
论文地址:https://arxiv.org/pdf/1409.1556.pdf
2014年ILSVRC分类比赛亚军
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
论文题目:Deep Residual Learning for Image Recognition
论文地址:https://arxiv.org/pdf/1512.03385.pdf
2015年1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation
论文题目:Identity Mappings in Deep Residual Networks
论文地址:https://arxiv.org/pdf/1603.05027.pdf
修改了ResNet中卷积、批量归一化和Relu层的顺序提高分类效果
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
论文题目:Densely Connected Convolutional Networks
论文地址:https://arxiv.org/pdf/1608.06993.pdf
CVPR2017最佳论文
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
论文题目:Aggregated Residual Transformations for Deep Neural Networks
论文地址:https://arxiv.org/pdf/1611.05431.pdf
ResNet分组卷积,提高检测准确率;Faster-RCNN Backbone首选网络
开源代码:
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
论文题目:Squeeze-and-Excitation Networks
论文地址:https://arxiv.org/pdf/1709.01507.pdf
在网络中增加了Squeeze和Excitation分支,提高检测准确率
论文题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
论文地址:https://arxiv.org/pdf/1905.11946.pdf
论文题目:Rich feature hierarchies for accurate object detection and semantic segmentation
论文地址:https://arxiv.org/pdf/1311.2524.pdf
通过Selective Search选择存在目标的区域,通过SVM实现分类,通过Bounding Box Regression实现定位
论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
论文地址:https://arxiv.org/pdf/1312.6229.pdf
通过全卷积网络实现目标定位,winner of the ILSVRC13 localization competition
论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文地址:https://arxiv.org/pdf/1406.4729.pdf
提出了空间金字塔池化的方法,进行图像分类和目标检测
论文题目:Fast R-CNN
论文地址:https://arxiv.org/pdf/1504.08083.pdf
提出了ROI Pooling的方法
论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
论文地址:https://arxiv.org/pdf/1506.01497.pdf
使用了Region Proposal Net替代Selective Search的方法,实现端到端检测并提高检测速度。
论文题目:R-FCN: Object Detection via Region-based Fully Convolutional Networks
论文地址:https://arxiv.org/pdf/1605.06409.pdf
在ROI中使用k*k的feature map投票预测种类
论文题目:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144.pdf
提出了图像特征金字塔的方法,提高对图像中小目标的检测精度
论文题目:SSD: Single Shot MultiBox Detector
论文地址:https://arxiv.org/pdf/1512.02325.pdf
一种One Stage Detector
论文题目:DSSD : Deconvolutional Single Shot Detector
论文地址:https://arxiv.org/pdf/1701.06659.pdf
改进了SSD,提高检测精度
论文题目:You Only Look Once: Unified, Real-Time Object Detection
论文地址:https://arxiv.org/pdf/1506.02640.pdf
代码地址:https://github.com/pjreddie/darknet
https://github.com/AlexeyAB/darknet
一种One Stage Detector,YOLO v1
论文题目:YOLO9000: Better, Faster, Stronger
论文地址:https://arxiv.org/pdf/1612.08242.pdf
YOLO v2, Backbone为Darknet19
论文题目:YOLOv3: An Incremental Improvement
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf
YOLOv3,Backbone为Darknet53,与v2相比,采用了残差模块和FPN结构
论文题目:Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
论文地址:https://arxiv.org/pdf/1904.04620v2.pdf
代码地址:https://github.com/jwchoi384/Gaussian_YOLOv3
论文题目:YOLOv4: Optimal Speed and Accuracy of Object Detection
论文地址:https://arxiv.org/pdf/2004.10934.pdf
YOLOv4,CSPDarknet53作为骨干网络,SPP作为附加模块,PANet作为特征融合的Neck,YOLOv3检测器作为Header。详细解析见https://blog.csdn.net/linghu8812/article/details/105729693。
论文题目:Focal Loss for Dense Object Detection
论文地址:https://arxiv.org/pdf/1708.02002.pdf
对于训练集中正负样本不平均的情况,采用了focal loss的方法,减小负样本数量过多的影响。
论文题目:CornerNet: Detecting Objects as Paired Keypoints
论文地址:https://arxiv.org/pdf/1808.01244.pdf
基于关键点的方法进行目标检测,使用了角池化的方法检测不在检测框的左上角或者右下角的目标。
论文题目:CornerNet-Lite: Efficient Keypoint Based Object Detection
论文地址:https://arxiv.org/pdf/1904.08900.pdf
使用了CornerNet Saccade和CornerNet Squeez对CornerNet检测进行提速。
论文题目:CenterNet: Keypoint Triplets for Object Detection
论文地址:https://arxiv.org/pdf/1904.08189.pdf
对CornerNet进行了中心池化和级联角池化的优化,提高了mAP。
论文题目:Objects as Points
论文地址:https://arxiv.org/pdf/1904.07850.pdf
采用了不同的Backbone进行检测比较检测速度和mAP。
论文题目:Cascade R-CNN Delving into High Quality Object Detection
论文地址:https://arxiv.org/pdf/1712.00726.pdf
论文题目:Relation Networks for Object Detection
论文地址:https://arxiv.org/pdf/1711.11575.pdf
论文题目:Single-Shot Refinement Neural Network for Object Detection
论文地址:https://arxiv.org/pdf/1711.06897.pdf
论文题目:An Analysis of Scale Invariance in Object Detection – SNIP
论文地址:https://arxiv.org/pdf/1711.08189.pdf
论文题目:R-FCN-3000 at 30fps: Decoupling Detection and Classification
论文地址:https://arxiv.org/pdf/1712.01802.pdf
论文题目:Single-Shot Object Detection with Enriched Semantics
论文链接:https://arxiv.org/pdf/1712.00433.pdf
论文题目:Scale-Transferrable Object Detection
论文地址:http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1376.pdf
论文题目:Fully Convolutional Networks for Semantic Segmentation
论文地址:https://arxiv.org/pdf/1411.4038.pdf
使用全连接网络进行图像语义分割
论文题目:Mask R-CNN
论文地址:https://arxiv.org/pdf/1703.06870.pdf
ICCV2017最佳论文,在faster rcnn的基础上增加了mask分支,进行实例分割
论文题目:Learning to Segment Every Thing
论文地址:https://arxiv.org/abs/1711.10370
Mask RCNN的升级版,设计了从bbox到mask的weight transfer function
论文题目:An overview of gradient descent optimization algorithms
论文地址:https://arxiv.org/pdf/1609.04747.pdf
介绍各种梯度下降方法,比较性能。
论文题目:On the momentum term in gradient descent learning algorithms
带动量的SGD
论文题目:A method for unconstrained convex minimization problem with the rate of convergence o(1/k2)
带Nesterov动量的SGD
论文题目:Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
论文地址:http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
Adagrad算法
论文题目:ADADELTA: An Adaptive Learning Rate Method
论文地址:https://arxiv.org/pdf/1212.5701.pdf
Adagrad算法
论文题目:Adam: a Method for Stochastic Optimization
论文地址:https://arxiv.org/pdf/1412.6980.pdf
Adam算法
论文题目:Incorporating Nesterov Momentum into Adam
论文地址:https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
带Nesterov动量的Adam算法
论文题目:Adaptive Gradient Methods with Dynamic Bound of Learning Rate
论文地址:https://arxiv.org/pdf/1902.09843.pdf
ICLR2019最新梯度下降论文
论文题目:Generative Adversarial Networks
论文地址:https://arxiv.org/pdf/1406.2661.pdf
通过对抗训练,生成与训练集类似的数据
论文题目:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
论文地址:https://arxiv.org/pdf/1511.06434.pdf
通过卷积和反卷积网络生成数据
论文题目:Least Squares Generative Adversarial Networks
论文地址:https://arxiv.org/pdf/1611.04076.pdf
损失函数为二次函数训练网络
论文题目:Wasserstein GAN
论文地址:https://arxiv.org/pdf/1701.07875.pdf
通过修改损失函数,提高生成效果
论文题目:FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
论文地址:https://arxiv.org/pdf/1702.01983.pdf
生成每个人不同年龄段的照片
论文题目:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
论文地址:https://arxiv.org/pdf/1703.10593.pdf
斑马图像和马的图像、苹果图像和橘子图像相互转换
论文题目:StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
论文地址:https://arxiv.org/pdf/1711.09020.pdf
生成明星不同肤色、发型、表情等特征的GAN
论文题目:CartoonGAN: Generative Adversarial Networks for Photo Cartoonization
照片转卡通风格
论文题目:Computing the Stereo Matching Cost with a Convolutional Neural Network
论文地址:https://arxiv.org/pdf/1409.4326.pdf
在9x9的图片patch上判断两点是否匹配
论文题目:Learning to Compare Image Patches via Convolutional Neural Networks
论文地址:https://arxiv.org/pdf/1504.03641.pdf
论文题目:Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
论文地址:https://arxiv.org/pdf/1510.05970v2.pdf
论文题目:Efficient Deep Learning for Stereo Matching
论文地址:https://www.cs.toronto.edu/~urtasun/publications/luo_etal_cvpr16.pdf
论文题目:End-to-End Learning of Geometry and Context for Deep Stereo Regression
论文地址:https://arxiv.org/pdf/1703.04309v1.pdf
论文题目:Learning for Disparity Estimation through Feature Constancy
论文地址:https://arxiv.org/pdf/1712.01039.pdf
论文题目:Pyramid Stereo Matching Network
论文地址:https://arxiv.org/pdf/1803.08669.pdf
四种归一化方法说明——Group Normalization, Yuxin Wu, Kaiming He, https://arxiv.org/pdf/1803.08494.pdf
论文题目:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
论文地址:https://arxiv.org/pdf/1502.03167.pdf
Batch Normalization批量归一化方法
论文题目:Layer Normalization
论文地址:https://arxiv.org/pdf/1607.06450.pdf
论文题目:Instance Normalization: The Missing Ingredient for Fast Stylization
论文地址:https://arxiv.org/pdf/1607.08022.pdf
论文题目:Group Normalization
论文地址:https://arxiv.org/pdf/1803.08494.pdf
组归一化方法
论文题目:Pruning Filters for Efficient ConvNets
论文地址:https://arxiv.org/pdf/1608.08710.pdf
基于卷积层权重的L1正则化大小作为标准进行剪枝
论文题目:Learning Efficient Convolutional Networks through Network Slimming
论文地址:https://arxiv.org/pdf/1708.06519.pdf
将Batch Normalization层的gamma系数作为标准进行剪枝。
论文题目:Rethinking the Value of Network Pruning
论文地址:https://arxiv.org/pdf/1810.05270.pdf
比较了各种剪枝算法,及剪枝后进行fine tune和train from scratch准确率的比较。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。