赞
踩
GLM官方的知乎微调教程:https://zhuanlan.zhihu.com/p/618498001
GLM官方的GitHub微调教程:https://github.com/THUDM/ChatGLM-6B/tree/main/ptuning
说这个微调出的模型和原模型是同时加载的,输入文本的时候会先看看微调出的模型有没有存相应的资料,然后再由完整的模型决定输出
本仓库实现了对于 ChatGLM2-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。
下面以 ADGEN (广告生成) 数据集为例介绍代码的使用方法。
运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖
pip install rouge_chinese nltk jieba datasets
ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。
{
"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
"summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}
从 Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen
目录放到本目录下。
运行以下指令进行训练:
bash train.sh
PRE_SEQ_LEN=128 #这是预序列长度,它定义了模型在处理输入序列时考虑的前部分长度。 LR=2e-2 #学习率,定义了模型在训练时如何更新权重 NUM_GPUS=1#GPU数量 torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \ --do_train \ #这个参数表示是否进行训练 --train_file AdvertiseGen/train.json \ #训练数据的文件路径 --validation_file AdvertiseGen/dev.json \ #验证数据的文件路 --preprocessing_num_workers 10 \ #用于预处理数据的工作进程数量 --prompt_column content \ #数据列名 --response_column summary \ #数据列名 --overwrite_cache \ #是否覆盖缓存 --model_name_or_path THUDM/chatglm2-6b \ #模型路径 --output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \ #输出目录的路径 --overwrite_output_dir \ #覆盖输出目录 --max_source_length 64 \ #这是源序列的最大长度 --max_target_length 128 \ #这是目标序列的最大长度 --per_device_train_batch_size 24 \ # 显存 --per_device_eval_batch_size 1 \ #评估批次大小 --gradient_accumulation_steps 16 \ #这是梯度积累的步数 --predict_with_generate \ #表示是否使用生成进行预测 --max_steps 3000 \ # 训练的最大步数(神经网络深度) --logging_steps 10 \ #这是日志记录的步数间隔 --save_steps 1000 \ #每走1000步 保存 一次(这是模型保存的步数间隔) --learning_rate $LR \3 --pre_seq_len $PRE_SEQ_LEN \ --quantization_bit 4 #这是量化位数,用于控制模型的量化程度
train.sh
中的 PRE_SEQ_LEN
和 LR
分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit
来被原始模型的量化等级,不加此选项则为 FP16 精度加载。
在默认配置 quantization_bit=4
、per_device_train_batch_size=1
、gradient_accumulation_steps=16
下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size
的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。
如果你想要从本地加载模型,可以将 train.sh
中的 THUDM/chatglm2-6b
改为你本地的模型路径。
如果需要进行全参数的 Finetune,需要安装 Deepspeed,然后运行以下指令:
bash ds_train_finetune.sh
在 P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数,所以在推理时需要同时加载原 ChatGLM2-6B 模型以及 PrefixEncoder 的权重,因此需要指定 evaluate.sh
中的参数:
--model_name_or_path THUDM/chatglm2-6b
--ptuning_checkpoint $CHECKPOINT_PATH
如果是,只需要跟之前一样设定 model_name_or_path
:
--model_name_or_path $CHECKPOINT_PATH
评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在
./output/adgen-chatglm2-6b-pt-128-2e-2/generated_predictions.txt
。
首先载入Tokenizer:
from transformers import AutoConfig, AutoModel, AutoTokenizer
# 载入Tokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
config = AutoConfig.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, pre_seq_len=128)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
注意你可能需要将 pre_seq_len
改成你训练时的实际值。如果你是从本地加载模型的话,需要将 THUDM/chatglm2-6b
改成本地的模型路径(注意不是checkpoint路径)。
model = AutoModel.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True)
之后根据需求可以进行量化,也可以直接使用:
# Comment out the following line if you don't use quantization
model = model.quantize(4)
model = model.cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
你也可以直接运行支持加载 P-Tuning v2 checkpoint 的 web demo
bash web_demo.sh
可能需要修改 web_demo.sh 的内容以符合你实际的 checkpoint 情况。
修改 train.sh
和 evaluate.sh
中的 train_file
、validation_file
和test_file
为你自己的 JSON 格式数据集路径,并将 prompt_column
和 response_column
改为 JSON 文件中输入文本和输出文本对应的 KEY。可能还需要增大 max_source_length
和 max_target_length
来匹配你自己的数据集中的最大输入输出长度。
如需要使用多轮对话数据对模型进行微调,可以提供聊天历史,例如以下是一个三轮对话的训练数据:
{"prompt": "长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "response": "用电脑能读数据流吗?水温多少", "history": []}
{"prompt": "95", "response": "上下水管温差怎么样啊?空气是不是都排干净了呢?", "history": [["长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "用电脑能读数据流吗?水温多少"]]}
{"prompt": "是的。上下水管都好的", "response": "那就要检查线路了,一般风扇继电器是由电脑控制吸合的,如果电路存在断路,或者电脑坏了的话会出现继电器不吸合的情况!", "history": [["长城h3风扇不转。继电器好的。保险丝好的传感器新的风扇也新的这是为什么。就是继电器缺一个信号线", "用电脑能读数据流吗?水温多少"], ["95", "上下水管温差怎么样啊?空气是不是都排干净了呢?"]]}
训练时需要指定 --history_column
为数据中聊天历史的 key(在此例子中是 history
),将自动把聊天历史拼接。要注意超过输入长度 max_source_length
的内容会被截断。
可以参考以下指令:
bash train_chat.sh
@inproceedings{liu2022p,
title={P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks},
author={Liu, Xiao and Ji, Kaixuan and Fu, Yicheng and Tam, Weng and Du, Zhengxiao and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
pages={61--68},
year={2022}
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。