赞
踩
前面一路从hadoop、spark、zookeeper、kafka等集群搭建而来,大数据生态环境已经初步形成,下面要继续来搭建大数据生态中很重要的Hive集群。
一、Hive简介
Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转换为 MapReduce 任务执行。
二、环境准备
hadoop-2.7.2
zookeeper-3.4.6
三台机器:
master 、worker1、worker2
三、开始搭建
1.下载Hive2.1.1安装包
wget http://www.apache.org/dyn/closer.cgi/hive/
或者直接去国内的清华大学 网易等镜像网站下载
解压至 /app/hive/目录下,这样管理目录更清晰。
2.配置环境变量
注意,Hive只需在一个节点上安装即可,即在master节点安装即可
[hadoop@master zookeeper]$ vim ~/.bash_profile
.bash_profile内容:
# User specific environment and startup programs
export JAVA_HOME=/app/java/jdk1.8.0_141
export HADOOP_HOME=/app/hadoop/hadoop-2.7.3
export SCALA_HOME=/app/scala/scala-2.11.8
export SPARK_HOME=/app/spark/spark-2.1.1
export ZOOKEEPER_HOME=/app/zookeeper/zookeeper-3.4.6
export KAFKA_HOME=/app/kafka/kafka_2.10-0.9.0.0
export HIVE_HOME=/app/hive/apache-hive-2.1.1-bin
PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SCALA_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin:$ZOOKEEPER_HOME/bin:$KAFKA_HOME/bin:$HIVE_HOME/bin
export PATH
3.安装配置mysql,检查并卸载掉centos自带的mysql
[hadoop@master app]$ rpm -qa |grep mysql
mysql-libs-5.1.71-1.el6.x86_64
[hadoop@master app]$ rpm -e mysql-libs-5.1.71-1.el6.x86_64 --nodeps
重新安装mysql,需要以管理员身份,此处使用sudo
[hadoop@master app]$ sudo rpm -e mysql-libs-5.1.71-1.el6.x86_64 --nodeps
[hadoop@master app]$ rpm -qa |grep mysql
[hadoop@master app]$ sudo yum -y install mysql-server
Loaded plugins: fastestmirror, refresh-packagekit, security
Installed:
mysql-server.x86_64 0:5.1.73-8.el6_8
Dependency Installed:
mysql.x86_64 0:5.1.73-8.el6_8 mysql-libs.x86_64 0:5.1.73-8.el6_8 perl-DBD-MySQL.x86_64 0:4.013-3.el6 perl-DBI.x86_64 0:1.609-4.el6
Complete!
[hadoop@master app]$ rpm -qa |grep mysql
mysql-5.1.73-8.el6_8.x86_64
mysql-libs-5.1.73-8.el6_8.x86_64
mysql-server-5.1.73-8.el6_8.x86_64
安装成功!
4.初始化配置mysql
(1)修改mysql的密码(root权限执行)
[hadoop@master usr]$ cd /usr/bin
[hadoop@master bin]$ sudo ./mysql_secure_installation
(2)输入当前MySQL数据库的密码, 初始root无密码, 直接回车
Enter current password for root (enter for none):
(3)设置MySQL中root用户的密码(应与下面Hive配置一致,此处设置为123)
Set root password? [Y/n] Y
New password:
Re-enter new password:
Password updated successfully!
Reloading privilege tables..
... Success!
(4)删除匿名用户
Remove anonymous users? [Y/n] Y
... Success!
(5)是否不允许用户远程连接,选择N
Disallow root login remotely? [Y/n] N
... Success!
(6)删除test数据库
Remove test database and access to it? [Y/n] Y
Dropping test database...
... Success!
Removing privileges on test database...
... Success!
(7)重装
Reload privilege tables now? [Y/n] Y
... Success!
(8)完成
All done! If you've completed all of the above steps, your MySQL
installation should now be secure.
Thanks for using MySQL!
(9)登陆mysql
mysql -uroot -p
//查看用户 select user from user;
//(无需)创建用户create user 'hive' @' %' identified by '123'
//删除用户 drop user 'hive' @' %';
flush privileges;
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '123' WITH GRANT OPTION;
FLUSH PRIVILEGES;
exit;
至此mysql配置完成。
5.配置Hive
(1)编辑hive-env.xml文件
[hadoop@master conf]$ cp hive-env.sh.template hive-env.sh
[hadoop@master conf]$ vim hive-env.sh
JAVA_HOME=/app/java/jdk1.8.0_141
HADOOP_HOME=/app/hadoop/hadoop-2.7.3
HIVE_HOME=/app/hive/apache-hive-2.1.1-bin
export HIVE_CONF_DIR=$HIVE_HOME/conf
#export HIVE_AUX_JARS_PATH=$SPARK_HOME/lib/spark-assembly-1.6.0-hadoop2.6.0.jar
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:$HADOOP_HOME/lib:$HIVE_HOME/lib
#export HADOOP_OPTS="-Dorg.xerial.snappy.tempdir=/tmp -Dorg.xerial.snappy.lib.name=libsnappyjava.jnilib $HADOOP_OPTS"
(2)编辑hive-site.xml
[hadoop@master conf]$ cp hive-default.xml.template hive-site.xml
[hadoop@master conf]$ vim hive-site.xml
里面配置项非常多,清掉configuration里的所有属性。
可参照如下的配置:
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123</value>
<description>password to use against metastore database</description>
</property>
<property>
<name>datanucleus.autoCreateSchema</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateTables</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateColumns</name>
<value>true</value>
</property>
<!-- 设置 hive仓库的HDFS上的位置 -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/hive</value>
<description>location of default database for the warehouse</description>
</property>
<!--资源临时文件存放位置 -->
<property>
<name>hive.downloaded.resources.dir</name>
<value>/app/hive/apache-hive-2.1.1-bin/tmp/resources</value>
<description>Temporary local directory for added resources in the remote file system.</description>
</property>
<!-- Hive在0.9版本之前需要设置hive.exec.dynamic.partition为true, Hive在0.9版本之后默认为true -->
<property>
<name>hive.exec.dynamic.partition</name>
<value>true</value>
</property>
<property>
<name>hive.exec.dynamic.partition.mode</name>
<value>nonstrict</value>
</property>
<!-- 修改日志位置 -->
<property>
<name>hive.exec.local.scratchdir</name>
<value>/app/hive/apache-hive-2.1.1-bin/tmp/HiveJobsLog</value>
<description>Local scratch space for Hive jobs</description>
</property>
<property>
<name>hive.downloaded.resources.dir</name>
<value>/app/hive/apache-hive-2.1.1-bin/tmp/ResourcesLog</value>
<description>Temporary local directory for added resources in the remote file system.</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/app/hive/apache-hive-2.1.1-bin/tmp/HiveRunLog</value>
<description>Location of Hive run time structured log file</description>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/app/hive/apache-hive-2.1.1-bin/tmp/OpertitionLog</value>
<description>Top level directory where operation tmp are stored if logging functionality is enabled</description>
</property>
<!-- 配置HWI接口 -->
<property>
<name>hive.hwi.war.file</name>
<value>/app/bin/apache-hive-2.2.1-bin/lib/hive-hwi-2.1.1.jar</value>
<description>This sets the path to the HWI war file, relative to ${HIVE_HOME}. </description>
</property>
<property>
<name>hive.hwi.listen.host</name>
<value>master</value>
<description>This is the host address the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
<description>This is the port the Hive Web Interface will listen on</description>
</property>
<!-- Hiveserver2已经不再需要hive.metastore.local这个配置项了(hive.metastore.uris为空,则表示是metastore在本地,否则就是远程)远程的话直接配置hive.metastore.uris即可 -->
<!-- property>
<name>hive.metastore.uris</name>
<value>thrift://master:9083</value>
<description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
</property -->
<property>
<name>hive.server2.thrift.bind.host</name>
<value>master</value>
</property>
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
<property>
<name>hive.server2.thrift.http.port</name>
<value>10001</value>
</property>
<property>
<name>hive.server2.thrift.http.path</name>
<value>cliservice</value>
</property>
<!-- HiveServer2的WEB UI -->
<property>
<name>hive.server2.webui.host</name>
<value>master</value>
</property>
<property>
<name>hive.server2.webui.port</name>
<value>10002</value>
</property>
<property>
<name>hive.scratch.dir.permission</name>
<value>755</value>
</property>
<!-- 下面hive.aux.jars.path这个属性里面你这个jar包地址如果是本地的记住前面要加file://不然找不到, 而且会报org.apache.hadoop.hive.contrib.serde2.RegexSerDe错误
<property>
<name>hive.aux.jars.path</name>
<value>file:///app/spark/lib/spark-assembly-1.6.0-hadoop2.6.0.jar</value>
</property>
-->
<property>
<name>hive.server2.enable.doAs</name>
<value>false</value>
</property>
<!-- property>
<name>hive.server2.authentication</name>
<value>NOSASL</value>
</property -->
<property>
<name>hive.auto.convert.join</name>
<value>false</value>
</property>
<property>
<name>spark.dynamicAllocation.enabled</name>
<value>true</value>
<description>动态分配资源</description>
</property>
<!-- 使用Hive on spark时,若不设置下列该配置会出现内存溢出异常 -->
<property>
<name>spark.driver.extraJavaOptions</name>
<value>-XX:PermSize=128M -XX:MaxPermSize=512M</value>
</property>
</configuration>
(3)配置日志地址, 修改hive-log4j.properties文件
[hadoop@master conf]$ cp hive-log4j2.properties.template hive-log4j.properties
[hadoop@master conf]$ vim hive-log4j.properties
将hive.log日志的位置改为${HIVE_HOME}/tmp目录
#将hive.log日志的位置改为${HIVE_HOME}/tmp目录
hive.log.dir=/app/hive/apache-hive-2.1.1-bin/tmp
创建tmp目录
[hadoop@master conf]$ mkdir ${HIVE_HOME}/tmp
(4)配置hive-config.sh文件
## 增加以下三行
export JAVA_HOME=/app/java/jdk1.8.0_141
export HIVE_HOME=/app/hive/apache-hive-2.1.1-bin
export HADOOP_HOME=/app/hadoop/hadoop-2.7.3
## 修改下列该行
HIVE_CONF_DIR=$HIVE_HOME/conf
(5)拷贝JDBC包
将JDBC的jar包放入$HIVE_HOME/lib目录下
[hadoop@master tgz]$ cp mysql-connector-java-5.1.19-bin.jar /app/hive/apache-hive-2.1.1-bin/lib/
(6)拷贝jline扩展包
将HIVE_HOME/lib目录下的jline-2.12.jar包
拷贝到HADOOP_HOME/share/hadoop/yarn/lib目录下,
并删除HADOOP_HOME/share/hadoop/yarn/lib目录下旧版本的jline包
[hadoop@master lib]$ cp jline-2.12.jar /app/hadoop/hadoop-2.7.3/share/hadoop/yarn/lib/
( 7 ) 拷贝tools.jar包
复制JAVA_HOME目录下的tools.jar到HIVE_HOME/lib下
[hadoop@master tgz]$ cp $JAVA_HOME/lib/tools.jar ${HIVE_HOME}/lib
(8)执行初始化Hive操作
选用MySQLysql和Derby二者之一为元数据库
注意:先查看MySQL中是否有残留的Hive元数据,若有,需先删除
在hive/bin目录下运行schematool -dbType mysql -initSchema ## MySQL作为元数据库
[hadoop@master bin]$ schematool -dbType mysql -initSchema
which: no hbase in (/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/hadoop/bin:/app/java/jdk1.8.0_141/bin:/app/hadoop/hadoop-2.7.3/bin:/app/hadoop/hadoop-2.7.3/sbin:/app/scala/scala-2.11.8/bin:/app/spark/spark-2.1.1/bin:/app/spark/spark-2.1.1/sbin:/app/zookeeper/zookeeper-3.4.6/bin:/app/kafka/kafka_2.10-0.9.0.0/bin:/app/hive/apache-hive-2.1.1-bin/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Metastore connection URL: jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true
Metastore Connection Driver : com.mysql.jdbc.Driver
Metastore connection User: root
Starting metastore schema initialization to 2.1.0
Initialization script hive-schema-2.1.0.mysql.sql
Initialization script completed
schemaTool completed
[hadoop@master bin]$
其中mysql表示用mysql做为存储hive元数据的数据库, 若不用mysql做为元数据库, 则执行
schematool -dbType derby -initSchema ## Derby作为元数据库
本文使用的是mysql作为元数据库
脚本hive-schema-1.2.1.mysql.sql会在配置的Hive元数据库中初始化创建表
(9)启动Metastore服务
执行Hive前, 须先启动metastore服务, 否则会报错
执行./hive –service metastore
[hadoop@master bin]$ ./hive --service metastore
which: no hbase in (/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/hadoop/bin:/app/java/jdk1.8.0_141/bin:/app/hadoop/hadoop-2.7.3/bin:/app/hadoop/hadoop-2.7.3/sbin:/app/scala/scala-2.11.8/bin:/app/spark/spark-2.1.1/bin:/app/spark/spark-2.1.1/sbin:/app/zookeeper/zookeeper-3.4.6/bin:/app/kafka/kafka_2.10-0.9.0.0/bin:/app/hive/apache-hive-2.1.1-bin/bin)
Starting Hive Metastore Server
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
(10)启动hadoop集群,因为hive是依赖于hdfs的,不启动hadoop会报如下错误
[hadoop@master bin]$ start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [master]
master: starting namenode, logging to /app/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-namenode-master.out
master: starting datanode, logging to /app/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-datanode-master.out
worker2: starting datanode, logging to /app/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-datanode-worker2.out
worker1: starting datanode, logging to /app/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-datanode-worker1.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /app/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-secondarynamenode-master.out
starting yarn daemons
starting resourcemanager, logging to /app/hadoop/hadoop-2.7.3/logs/yarn-hadoop-resourcemanager-master.out
master: starting nodemanager, logging to /app/hadoop/hadoop-2.7.3/logs/yarn-hadoop-nodemanager-master.out
worker1: starting nodemanager, logging to /app/hadoop/hadoop-2.7.3/logs/yarn-hadoop-nodemanager-worker1.out
worker2: starting nodemanager, logging to /app/hadoop/hadoop-2.7.3/logs/yarn-hadoop-nodemanager-worker2.out
[hadoop@master bin]$ jps
7220 ResourceManager
6869 DataNode
7323 NodeManager
7053 SecondaryNameNode
6765 NameNode
7358 Jps
打开另一个终端窗口,启动Hive进程
[hadoop@master bin]$ hive
which: no hbase in (/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/hadoop/bin:/app/java/jdk1.8.0_141/bin:/app/hadoop/hadoop-2.7.3/bin:/app/hadoop/hadoop-2.7.3/sbin:/app/scala/scala-2.11.8/bin:/app/spark/spark-2.1.1/bin:/app/spark/spark-2.1.1/sbin:/app/zookeeper/zookeeper-3.4.6/bin:/app/kafka/kafka_2.10-0.9.0.0/bin:/app/hive/apache-hive-2.1.1-bin/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Logging initialized using configuration in jar:file:/app/hive/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive>
不启动hadoop集群会报如下错误:
[hadoop@master bin]$ ./hive
which: no hbase in (/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/hadoop/bin:/app/java/jdk1.8.0_141/bin:/app/hadoop/hadoop-2.7.3/bin:/app/hadoop/hadoop-2.7.3/sbin:/app/scala/scala-2.11.8/bin:/app/spark/spark-2.1.1/bin:/app/spark/spark-2.1.1/sbin:/app/zookeeper/zookeeper-3.4.6/bin:/app/kafka/kafka_2.10-0.9.0.0/bin:/app/hive/apache-hive-2.1.1-bin/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Logging initialized using configuration in jar:file:/app/hive/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Exception in thread "main" java.lang.RuntimeException: java.net.ConnectException: Call From master/192.168.163.145 to master:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:591)
at org.apache.hadoop.hive.ql.session.SessionState.beginStart(SessionState.java:531)
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:705)
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:641)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.net.ConnectException: Call From master/192.168.163.145 to master:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:792)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:732)
at org.apache.hadoop.ipc.Client.call(Client.java:1479)
at org.apache.hadoop.ipc.Client.call(Client.java:1412)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy31.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:771)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy32.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:2108)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1305)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1426)
at org.apache.hadoop.hive.ql.session.SessionState.createRootHDFSDir(SessionState.java:689)
at org.apache.hadoop.hive.ql.session.SessionState.createSessionDirs(SessionState.java:635)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:563)
... 9 more
Caused by: java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:614)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:712)
at org.apache.hadoop.ipc.Client$Connection.access$2900(Client.java:375)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1528)
at org.apache.hadoop.ipc.Client.call(Client.java:1451)
... 29 more
四、测试
hive> show databases;
OK
default
Time taken: 2.529 seconds, Fetched: 1 row(s)
hive> show tables;
OK
Time taken: 0.225 seconds
hive> create table employee (id bigint,name string) row format delimited fields terminated by '\t';
OK
Time taken: 2.264 seconds
hive> select * from employee;
OK
Time taken: 3.812 seconds
至此hive搭建完成。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。