赞
踩
在《Kafka Stream简单示例(一)》基础上,我们稍作修改实现一个基于固定时间窗口统计总和的例子。
统计每30秒内,按照key分组的总值。topic收到的消息格式:key:a, value:1, 例如如果kafka topic 30秒(Tumbling Window, 也就是固定窗口), 收到消息key:a, value:1, key:b, value:5, key:a, value:3, 统计结果为key:a为 4(1+3), key:b为5.
备注:我的kafka版本是kafka_2.12-1.0.0, 应用的kafka stream版本是1.0.2, 请大家注意版本差异。
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>1.0.2</version>
</dependency>
项目依赖和第一篇相同。这里直接上代码,本示例代码还是在官方提供的代码基础上修改而来。
核心在于提供以下3参数:
inal Initializer initializer —提供初始化的值, 示例代码提供的初始值为0L
final Aggregator<? super K, ? super V, VR> aggregator, —怎么计算聚合, 我们key相同的值进行相加
final Materialized<K, VR, WindowStore<Bytes, byte[]>> materialized —进行状态标记
KStream<String, String> source = builder.stream(“iot-key”); —我们topic的内容为key:a, value:1这种格式
.groupByKey()—按照key来统计, 也就是key为a的算一组,key为b的算一组
.windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(TEMPERATURE_WINDOW_SIZE)))—时间窗口为30秒
KTable<Windowed, Long> 最终的结果为key为Windowed类型,value为Long类型
package com.yq; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serdes; import org.apache.kafka.common.utils.Bytes; import org.apache.kafka.streams.KafkaStreams; import org.apache.kafka.streams.StreamsBuilder; import org.apache.kafka.streams.StreamsConfig; import org.apache.kafka.streams.kstream.Aggregator; import org.apache.kafka.streams.kstream.Initializer; import org.apache.kafka.streams.kstream.KStream; import org.apache.kafka.streams.kstream.KTable; import org.apache.kafka.streams.kstream.Materialized; import org.apache.kafka.streams.kstream.Produced; import org.apache.kafka.streams.kstream.TimeWindows; import org.apache.kafka.streams.kstream.Windowed; import org.apache.kafka.streams.kstream.internals.WindowedDeserializer; import org.apache.kafka.streams.kstream.internals.WindowedSerializer; import org.apache.kafka.streams.state.WindowStore; import java.util.Properties; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; /* * iot-key 输入的数据格式为,并且是在刚好在20秒的窗口被stream消费 * key:a, value:1, key:b, value:5, key:b. value:7, key:a. value:2, key:a, value3. key:b, value:3, * iot-key-sum结果为, * key:a, value1, key:b, value:5, key:b, value:12(5+7) key:a, value:3(1 + 2), key:a, value:(3+3) * , key:b, value:15 * * 本代码为演示使用没有异常处理,如果输入的value不是数字,会出现NumberFormatException异常 */ public class TempAggregationSumDemo { private static final int TEMPERATURE_WINDOW_SIZE = 30; public static void main(String[] args) throws Exception { Properties props = new Properties(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-key-sum"); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0); StreamsBuilder builder = new StreamsBuilder(); KStream<String, String> source = builder.stream("iot-key"); //KStream是一个由键值对构成的抽象记录流,每个键值对是一个独立的单元,即使相同的Key也不会覆盖,类似数据库的插入操作 KTable<Windowed<String>, Long> sumWindowed = source .groupByKey() .windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(TEMPERATURE_WINDOW_SIZE))) .aggregate( new Initializer<Long>() { @Override public Long apply() { return 0L; } }, new Aggregator<String, String, Long>() { @Override public Long apply(String aggKey, String newValue, Long aggValue) { System.out.println("aggKey:" + aggKey+ ", newValue:" + newValue +", aggKey:" + aggValue ); Long newValueLong = Long.valueOf(newValue); long newSum = aggValue.longValue() + newValueLong.longValue(); return Long.valueOf(newSum); } }, Materialized.<String, Long, WindowStore<Bytes, byte[]>>as("time-windowed-aggregated-temp-stream-store") .withValueSerde(Serdes.Long()) ); WindowedSerializer<String> windowedSerializer = new WindowedSerializer<>(Serdes.String().serializer()); WindowedDeserializer<String> windowedDeserializer = new WindowedDeserializer<>(Serdes.String().deserializer(), TEMPERATURE_WINDOW_SIZE); Serde<Windowed<String>> windowedSerde = Serdes.serdeFrom(windowedSerializer, windowedDeserializer);; sumWindowed.toStream().to("iot-key-sum", Produced.with(windowedSerde, Serdes.Long())); final KafkaStreams streams = new KafkaStreams(builder.build(), props); final CountDownLatch latch = new CountDownLatch(1); // attach shutdown handler to catch control-c Runtime.getRuntime().addShutdownHook(new Thread("streams-key-shutdown-hook") { @Override public void run() { streams.close(); latch.countDown(); } }); try { streams.start(); latch.await(); } catch (Throwable e) { System.exit(1); } System.exit(0); } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。