赞
踩
<!-- 指定仓库位置,依次为aliyun、cloudera和jboss仓库 --> <repositories> <repository> <id>aliyun</id> <url>http://maven.aliyun.com/nexus/content/groups/public/</url> </repository> <repository> <id>cloudera</id> <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url> </repository> </repositories> <properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> <encoding>UTF-8</encoding> <scala.version>2.11.8</scala.version> <scala.compat.version>2.11</scala.compat.version> <hadoop.version>2.7.4</hadoop.version> <spark.version>2.2.0</spark.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.4</version> </dependency> <!-- <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive-thriftserver_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql-kafka-0-10_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0-mr1-cdh5.14.0</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.2.0-cdh5.14.0</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.2.0-cdh5.14.0</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>com.typesafe</groupId> <artifactId>config</artifactId> <version>1.3.3</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.38</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.47</version> </dependency>--> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <plugins> <!-- 指定编译java的插件 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.5.1</version> </plugin> <!-- 指定编译scala的插件 --> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> <configuration> <args> <arg>-dependencyfile</arg> <arg>${project.build.directory}/.scala_dependencies</arg> </args> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.18.1</version> <configuration> <useFile>false</useFile> <disableXmlReport>true</disableXmlReport> <includes> <include>**/*Test.*</include> <include>**/*Suite.*</include> </includes> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.3</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass></mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> </build>
package cn.hanjiaxiaozhi.hello import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * Author hanjiaxiaozhi * Date 2020/7/20 15:49 * Desc 演示使用Spark编写WordCount */ object WordCount { def main(args: Array[String]): Unit = { //1.创建sc-Spark执行环境 val conf: SparkConf = new SparkConf().setAppName("wc").setMaster("local[*]")//local[*]表示在本地以多线程的方式模式Spark集群运行,和上午在spark-shell中演示的local本地模式类似,*表示使用本地的所有资源 val sc: SparkContext = new SparkContext(conf) sc.setLogLevel("WARN")//表示将后续的日志级别设置为warn,减少不必要输出 //2.读取文件 //A Resilient Distributed Dataset (RDD)弹性分布式数据集,后续会详细讲解,今天暂时理解为分布式集合,但是使用起来和本地集合一样简单 //RDD[一行行的单词] val fileRDD: RDD[String] = sc.textFile("file:///D:\\data\\spark\\words.txt") //3.数据处理-WordCount //3.1切分每一行单词并压扁为一个集合 //RDD[一个一个的单词] val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" ")) //3.2每个单词记为1 //RDD[(hello, 1),(hello, 1),(hello, 1)...(you,1)..] val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1)) //3.3分组聚合--以前得groupBy之后在累加聚合,现在可以使用reduceByKey一步搞定 //reduceByKey后面会单独讲,今天直接用,可以直接理解为按照Key进行聚合,效果=groupBy+聚合 val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_+_) //4.输出结果 //上面的RDD[(String, Int)]是分布式集合,所以先收集为本地集合再输出到控制台 val result: Array[(String, Int)] = wordAndCount.collect() result.foreach(println) //5.关闭sc sc.stop() } }
mater可以注掉后续在提交命令参数中指定 //.setMaster("local[*]")
sc.textFile(args(0))//表示后续提交运行时候通过参数指定文件输入路径
wordAndCount.saveAsTextFile(args(1))//表示后续提交运行时通过参数指定文件输出路径
package cn.hanjiaxiaozhi.hello import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * Author hanjiaxiaozhi * Desc 演示使用Spark编写WordCount */ object WordCount { def main(args: Array[String]): Unit = { //1.创建sc-Spark执行环境 val conf: SparkConf = new SparkConf().setAppName("wc")//.setMaster("local[*]")//local[*]表示在本地以多线程的方式模式Spark集群运行,和上午在spark-shell中演示的local本地模式类似,*表示使用本地的所有资源 val sc: SparkContext = new SparkContext(conf) sc.setLogLevel("WARN")//表示将后续的日志级别设置为warn,减少不必要输出 //2.读取文件 //A Resilient Distributed Dataset (RDD)弹性分布式数据集,后续会详细讲解,今天暂时理解为分布式集合,但是使用起来和本地集合一样简单 //RDD[一行行的单词] val fileRDD: RDD[String] = sc.textFile(args(0))//表示后续提交运行时候通过参数指定文件输入路径 //3.数据处理-WordCount //3.1切分每一行单词并压扁为一个集合 //RDD[一个一个的单词] val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" ")) //3.2每个单词记为1 //RDD[(hello, 1),(hello, 1),(hello, 1)...(you,1)..] val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1)) //3.3分组聚合--以前得groupBy之后在累加聚合,现在可以使用reduceByKey一步搞定 //reduceByKey后面会单独讲,今天直接用,可以直接理解为按照Key进行聚合,效果=groupBy+聚合 val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_+_) //4.输出结果 //上面的RDD[(String, Int)]是分布式集合,所以先收集为本地集合再输出到控制台 //val result: Array[(String, Int)] = wordAndCount.collect() //result.foreach(println) wordAndCount.saveAsTextFile(args(1))//表示后续提交运行时通过参数指定文件输出路径 //5.关闭sc sc.stop() } }
/export/servers/spark/bin/spark-submit \
--class cn.hanjiaxiaozhi.hello.WordCount \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/root/wc.jar \
hdfs://node01:8020/wordcount/input/words.txt \
hdfs://node01:8020/wordcount/output43_yarn
[root@node01 bin]# ./spark-submit --help Usage: spark-submit [options] <app jar | python file> [app arguments] Usage: spark-submit --kill [submission ID] --master [spark://...] Usage: spark-submit --status [submission ID] --master [spark://...] Usage: spark-submit run-example [options] example-class [example args] Options: --master MASTER_URL spark://host:port, mesos://host:port, yarn, or local. --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or on one of the worker machines inside the cluster ("cluster") (Default: client). --class CLASS_NAME Your application's main class (for Java / Scala apps). --name NAME A name of your application. --jars JARS Comma-separated list of local jars to include on the driver and executor classpaths. --packages Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version. --exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts. --repositories Comma-separated list of additional remote repositories to search for the maven coordinates given with --packages. --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps. --files FILES Comma-separated list of files to be placed in the working directory of each executor. File paths of these files in executors can be accessed via SparkFiles.get(fileName). --conf PROP=VALUE Arbitrary Spark configuration property. --properties-file FILE Path to a file from which to load extra properties. If not specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). --driver-java-options Extra Java options to pass to the driver. --driver-library-path Extra library path entries to pass to the driver. --driver-class-path Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). --proxy-user NAME User to impersonate when submitting the application. This argument does not work with --principal / --keytab. --help, -h Show this help message and exit. --verbose, -v Print additional debug output. --version, Print the version of current Spark. Spark standalone with cluster deploy mode only: --driver-cores NUM Cores for driver (Default: 1). Spark standalone or Mesos with cluster deploy mode only: --supervise If given, restarts the driver on failure. --kill SUBMISSION_ID If given, kills the driver specified. --status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only: --total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only: --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode, or all available cores on the worker in standalone mode) YARN-only: --driver-cores NUM Number of cores used by the driver, only in cluster mode (Default: 1). --queue QUEUE_NAME The YARN queue to submit to (Default: "default"). --num-executors NUM Number of executors to launch (Default: 2). If dynamic allocation is enabled, the initial number of executors will be at least NUM. --archives ARCHIVES Comma separated list of archives to be extracted into the working directory of each executor. --principal PRINCIPAL Principal to be used to login to KDC, while running on secure HDFS. --keytab KEYTAB The full path to the file that contains the keytab for the principal specified above. This keytab will be copied to the node running the Application Master via the Secure Distributed Cache, for renewing the login tickets and the delegation tokens periodically.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。