赞
踩
import numpy as np
import argparse
import cv2
import imutils
首先对图像进行处理。
# 设置读取图片的路径 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", default="scan.jpg", help = "Path to the image to be scanned") ## 这里修改为要扫描的图片的位置 args = vars(ap.parse_args()) # 加载原图 并对原图进行Resize image = cv2.imread(args["image"]) ratio = image.shape[0] / 500.0 orig = image.copy() image = imutils.resize(image, height = 500) #根据长宽比自动计算另外一边的尺寸进行resize #根据处理找到边缘 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200) # show the original image and the edge detected image print("STEP 1: Edge Detection") cv2.imshow("Image", image) cv2.imshow("Edged", edged) cv2.waitKey(0) cv2.destroyAllWindows()
# find the contours in the edged image, keeping only the # largest ones, and initialize the screen contour cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) ## 找到轮廓 cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # loop over the contours for c in cnts: # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # if our approximated contour has four points, then we # can assume that we have found our screen if len(approx) == 4: screenCnt = approx break # show the contour (outline) of the piece of paper print("STEP 2: Find contours of paper") cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) cv2.imshow("Outline", image) cv2.waitKey(0) cv2.destroyAllWindows()
在本部分 首先要定义两个函数
def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # return the warped image return warped
然后调用函数就好了,如果需要进行扫描,二值化的话 把下面注释掉的代码放开就行,因为我只需要原图校正,所以不需要。(左图为原始图片,右侧为校正或者扫描后的硬盘图片。)
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
# convert the warped image to grayscale, then threshold it
# 这里是二值化,也就是扫描成黑白的,可以把这部分放开注释,如果需要的话。
# to give it that 'black and white' paper effect
# warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
# T = threshold_local(warped, 11, offset = 10, method = "gaussian")
# warped = (warped > T).astype("uint8") * 255
# show the original and scanned images
print("STEP 3: Apply perspective transform")
cv2.imshow("Original", imutils.resize(orig, height = 650))
cv2.imshow("Scanned", imutils.resize(warped, height = 650))
cv2.waitKey(0)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。