赞
踩
完整项目
本篇博客,主要介绍各个模型的模块定义,包括模型本身的定义以及模型对应的配置(超参数)的定义,二者在一个模块文件中。
目录
- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- self.model_name = 'bert'
- #训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- #类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- #存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
- #预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './bert_pretrain'
- #序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- #隐藏单元数
- self.hidden_size = 768

-
- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
- #加载bert预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- #微调
- for param in self.bert.parameters():
- param.requires_grad = True #finetuning
- #输出层
- self.fc = nn.Linear(config.hidden_size, config.num_classes)
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- _, pooled = self.bert(context, attention_mask=mask, output_all_encoded_layers=False) #pooled (batch,hidden_size) cls对应的最后一层的编码向量
- out = self.fc(pooled) #(batch,classes)
- return out

- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- self.model_name = 'bert'
- # 训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- # 类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- # 存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
-
- # 预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './bert_pretrain'
- # 序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- # 隐藏单元数
- self.hidden_size = 768
- self.filter_sizes = (2, 3, 4) # 不同大小卷积核尺寸
- self.num_filters = 256 # 不同大小卷积核数量(channels数)
- self.dropout = 0.1 #丢弃率

- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
- # 加载bert预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- # 微调
- for param in self.bert.parameters():
- param.requires_grad = True
- #不同大小卷积核的2d卷积操作
- self.convs = nn.ModuleList(
- [nn.Conv2d(1, config.num_filters, (k, config.hidden_size)) for k in config.filter_sizes])
- self.dropout = nn.Dropout(config.dropout)
-
-
- self.fc_cnn = nn.Linear(config.num_filters * len(config.filter_sizes), config.num_classes)
-
- def conv_and_pool(self, x, conv):
- x = F.relu(conv(x)).squeeze(3)#(batch,num_filters,height)
- x = F.max_pool1d(x, x.size(2)).squeeze(2) #(batch,num_filters) 全局最大池化
- return x
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- #encoder_out (batch,seq_len,hidden_size) 最后一层 各个时刻/token对应的编码向量
- #text_cls (batch,hidden_size) 最后一层 cls token对应的编码向量
- encoder_out, text_cls = self.bert(context, attention_mask=mask, output_all_encoded_layers=False)
- out = encoder_out.unsqueeze(1) #添加通道维 方便2d卷积 (batch,1,seq_len,hidden_size)
- out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1) #(batch,num_filters*len(filter_sizes)
- out = self.dropout(out)
- out = self.fc_cnn(out) #(batch,classes)
- return out

- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- self.model_name = 'bert'
- # 训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- # 类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- # 存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
-
- # 预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './bert_pretrain'
- # 序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- # 隐藏单元数
- self.hidden_size = 768
-
- self.dropout = 0.1 #丢弃率
- self.rnn_hidden = 768 #rnn隐藏单元数
- self.num_layers = 2 #rnn层数

- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
-
- # 加载bert预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- # 微调
- for param in self.bert.parameters():
- param.requires_grad = True
- #两层双向lstm batch_size 为第一维度
- self.lstm = nn.LSTM(config.hidden_size, config.rnn_hidden, config.num_layers,
- bidirectional=True, batch_first=True, dropout=config.dropout)
- self.dropout = nn.Dropout(config.dropout)
- self.fc_rnn = nn.Linear(config.rnn_hidden * 2, config.num_classes)
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- # encoder_out (batch,seq_len,hidden_size) 最后一层 各个时刻/token对应的编码向量
- # text_cls (batch,hidden_size) 最后一层 cls token对应的编码向量
- encoder_out, text_cls = self.bert(context, attention_mask=mask, output_all_encoded_layers=False)
-
- out, _ = self.lstm(encoder_out) #(batch,seq_len,rnn_hidden_size*2)
- out = self.dropout(out)
- out = self.fc_rnn(out[:, -1, :]) # 句子最后时刻的 hidden state (batch,classes)
- return out

- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- # 训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- # 类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- # 存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
-
- # 预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './bert_pretrain'
- # 序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- # 隐藏单元数
- self.hidden_size = 768
-
- self.dropout = 0.1
- self.rnn_hidden = 256 #rnn 隐藏单元数
- self.num_layers = 2 #rnn层数

- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
- # 加载bert预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- # 微调
- for param in self.bert.parameters():
- param.requires_grad = True
- # 两层双向lstm batch_size 为第一维度
- self.lstm = nn.LSTM(config.hidden_size, config.rnn_hidden, config.num_layers,
- bidirectional=True, batch_first=True, dropout=config.dropout)
- self.maxpool = nn.MaxPool1d(config.pad_size) #1维全局最大池化
- self.fc = nn.Linear(config.rnn_hidden * 2 + config.hidden_size, config.num_classes)
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- # encoder_out (batch,seq_len,hidden_size) 最后一层 各个时刻/token对应的编码向量
- # text_cls (batch,hidden_size) 最后一层 cls token对应的编码向量
- encoder_out, text_cls = self.bert(context, attention_mask=mask, output_all_encoded_layers=False)
-
- out, _ = self.lstm(encoder_out) #(batch,seq_len,rnn_hidden_size*2)
- out = torch.cat((encoder_out, out), 2) #(batch,seq_len,hidden_size+rnn_hidden_size*2)
- out = F.relu(out)
- out = out.permute(0, 2, 1) #(batch,hidden_size+rnn_hidden_size*2,seq_len) 把隐藏状态维提前 作为通道维 对seq_len维作全局最大池化
- out = self.maxpool(out).squeeze() #(batch,hidden_size+rnn_hidden_size*2)
- out = self.fc(out) #(batch,classes)
- return out

- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- self.model_name = 'bert'
- # 训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- # 类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- # 存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
-
- # 预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './bert_pretrain'
- # 序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- # 隐藏单元数
- self.hidden_size = 768
- self.num_filters = 250 # 卷积核数量(channels数)

- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
- # 加载bert预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- # 微调
- for param in self.bert.parameters():
- param.requires_grad = True
-
- # self.fc = nn.Linear(config.hidden_size, config.num_classes)
- # region embedding 类似于TextCNN中的卷积操作
- self.conv_region = nn.Conv2d(1, config.num_filters, (3, config.hidden_size), stride=1)
-
- self.conv = nn.Conv2d(config.num_filters, config.num_filters, (3, 1), stride=1)
- self.max_pool = nn.MaxPool2d(kernel_size=(3, 1), stride=2)
- self.padding1 = nn.ZeroPad2d((0, 0, 1, 1)) # top bottom 上下各添一个0
- self.padding2 = nn.ZeroPad2d((0, 0, 0, 1)) # bottom 下添一个0
- self.relu = nn.ReLU()
- self.fc = nn.Linear(config.num_filters, config.num_classes)
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- # encoder_out (batch,seq_len,hidden_size) 最后一层 各个时刻/token对应的编码向量
- # text_cls (batch,hidden_size) 最后一层 cls token对应的编码向量
- encoder_out, text_cls = self.bert(context, attention_mask=mask, output_all_encoded_layers=False)
-
- x = encoder_out.unsqueeze(1) # [batch_size, 1, seq_len, hidden_size] 增加通道维 方便2d卷积
- x = self.conv_region(x) # [batch_size, num_filters, seq_len-3+1, 1]
-
- #等长卷积 序列长度不变 通过卷积和填充操作实现
- #激活函数在卷积操作之前
- x = self.padding1(x) # [batch_size, num_filters, seq_len, 1]
- x = self.relu(x)
- x = self.conv(x) # [batch_size, num_filters, seq_len-3+1, 1]
- x = self.padding1(x) # [batch_size, num_filters, seq_len, 1]
- x = self.relu(x)
- x = self.conv(x) # [batch_size, num_filters, seq_len-3+1, 1]
-
- while x.size()[2] > 2: #序列长度>2 则不停循环下列操作
- x = self._block(x)
- x = x.squeeze() # [batch_size, num_filters(250)]
- x = self.fc(x)
- return x
-
- def _block(self, x): #x [batch_size, num_filters, seq_len-3+1, 1]
- x = self.padding2(x) #[batch_size, num_filters, seq_len-1, 1]
- px = self.max_pool(x) #序列长度减半 [batch_size, num_filters, (seq_len-1)/2, 1]
- # 等长卷积 序列长度不变 通过卷积和填充操作实现
- # 激活函数在卷积操作之前
- x = self.padding1(px)
- x = F.relu(x)
- x = self.conv(x)
- x = self.padding1(x)
- x = F.relu(x)
- x = self.conv(x) #[batch_size, num_filters, (seq_len-1)/2, 1]
-
- x = x + px # short cut
- return x

- class Config(object):
-
- """配置参数"""
- def __init__(self, dataset):
- self.model_name = 'ERNIE'
- # 训练集、验证集、测试集路径
- self.train_path = dataset + '/data/train.txt'
- self.dev_path = dataset + '/data/dev.txt'
- self.test_path = dataset + '/data/test.txt'
- # 类别名单
- self.class_list = [x.strip() for x in open(
- dataset + '/data/class.txt').readlines()]
- # 存储模型的训练结果
- self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
-
- self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
- self.num_classes = len(self.class_list) # 类别数
- self.num_epochs = 3 # epoch数
- self.batch_size = 128 # mini-batch大小
- self.pad_size = 32 # 每句话处理成的长度(短填长切)
- self.learning_rate = 5e-5 # 学习率
-
- # 预训练模型相关文件(模型文件.bin、配置文件.json、词表文件vocab.txt)存储路径
- self.bert_path = './ERNIE_pretrain'
- # 序列切分工具
- self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
- print(self.tokenizer)
- # 隐藏单元数
- self.hidden_size = 768

- class Model(nn.Module):
-
- def __init__(self, config):
- super(Model, self).__init__()
- # 加载ERNIE预训练模型
- self.bert = BertModel.from_pretrained(config.bert_path)
- # 微调
- for param in self.bert.parameters():
- param.requires_grad = True # finetuning
- # 输出层
- self.fc = nn.Linear(config.hidden_size, config.num_classes)
-
- def forward(self, x):
- context = x[0] # 输入的句子 (batch,seq_len)
- mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
- _, pooled = self.bert(context, attention_mask=mask,
- output_all_encoded_layers=False) # pooled (batch,hidden_size) cls对应的最后一层的编码向量
- out = self.fc(pooled) # (batch,classes)
- return out

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。