当前位置:   article > 正文

python漂亮的可视化表,python可视化数据图表_python 绘制表格

python 绘制表格

大家好,本文将围绕python数据可视化之美:专业图表绘制指南(全彩)展开说明,python可视化图做好了怎么弄下来是一个很多人都想弄明白的事情,想搞清楚python可视化图表和excel的区别需要先了解以下几个事情。

###序言:     Python的可视化工具,以下截图,均以展示图表实例,如需了解部分对象的输出结果,可参照我Github上的代码,3Q?

 

####【课程3.6】 基本图表绘制 plt.plot()     图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主 同时可延展出多种其他图表样式

plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)

#####Series直接生成图表

  1. import numpy as np
  2. import pandas as pd
  3. import matplotlib.pyplot as plt
  4. # Series直接生成图表
  5. ts = pd.Series(np.random.randn(1000), index = pd.date_range("1/1/2000", periods = 1000))
  6. ts = ts.cumsum()
  7. ts.plot(kind = "line",
  8. label = "heheheh", # Series需要Lable
  9. style = "--g.",
  10. color = "red",
  11. alpha = 0.4,
  12. use_index = True,
  13. rot = 45,
  14. grid = True,
  15. ylim = [-50, 50],
  16. yticks = list(range(-50, 50, 10)),
  17. figsize = (8,4),
  18. title = "test",
  19. legend = True)
  20. # plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x') # 网格
  21. plt.legend()
  22. # Series.plot():series的index为横坐标,value为纵坐标
  23. # kind → line,bar,barh...(折线图,柱状图,柱状图-横...)
  24. # label → 图例标签,Dataframe格式以列名为label
  25. # style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)
  26. # color → 颜色,有color指定时候,以color颜色为准
  27. # alpha → 透明度,0-1
  28. # use_index → 将索引用为刻度标签,默认为True
  29. # rot → 旋转刻度标签,0-360
  30. # grid → 显示网格,一般直接用plt.grid
  31. # xlim,ylim → x,y轴界限
  32. # xticks,yticks → x,y轴刻度值
  33. # figsize → 图像大小
  34. # title → 图名
  35. # legend → 是否显示图例,一般直接用plt.legend()
  36. # 也可以 → plt.plot()
  37. 复制代码


>#####DataFrame直接生成图表 ``` # DataFrame直接生成图表

df = pd.DataFrame(np.random.randn(1000, 4), index = ts.index, columns = list("ABCD")) df = df.cumsum() df.plot(kind = "line", style = "--.", alpha = 0.4, use_index = True, rot = 45, grid = True, figsize = (8,4), title = "test", legend = True, subplots = False, colormap = "Greens")

subplots -> 是否将各个列绘制到不同图表,默认False

也可以 -> plt.plot(df)

  1. ![2.png](https://upload-images.jianshu.io/upload_images/2330091-aaa674c6f0e16b8f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.7】 柱状图、堆叠图
  4. &ensp;&ensp;&ensp;&ensp;plt.plot(kind='bar/barh') , plt.bar()
  5. >##### 柱状图与堆叠图
  6. 复制代码

柱状图与堆叠图

fig, axes = plt.subplots(4,1,figsize = (10,10)) s = pd.Series(np.random.randint(0,10,16), index = list("abcdefghijklmnop")) df = pd.DataFrame(np.random.rand(10,3), columns = ["a", "b", "c"])

s.plot(kind = "bar", color = "k", grid = True, alpha = 0.5, ax = axes[0]) # ax参数 -> 选择第几个子图

单系列柱状图方法一:plt.plot(kind = "bar/barh")

df.plot(kind = "bar", ax = axes[1], grid = True, colormap = "Reds_r")

多序列柱状图

df.plot(kind = "bar", ax = axes[2], grid = True, colormap = "Blues_r", stacked = True)

多系列堆叠图

stacked -> 堆叠

df.plot.barh(ax = axes[3], grid = True, stacked = True, colormap = "BuGn_r")

新版本plt.plot.

  1. ![3.png](https://upload-images.jianshu.io/upload_images/2330091-6246e2a30a134871.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 柱状图 plt.bar()
  4. 复制代码

柱状图 plt.bar()

plt.figure(figsize=(10,4)) x = np.arange(10) y1 = np.random.rand(10) y2 = -np.random.rand(10)

plt.bar(x, y1, width = 1, facecolor = "yellowgreen", edgecolor = "white", yerr = y10.1) plt.bar(x, y2, width = 1, facecolor = "lightskyblue", edgecolor = "white", yerr = y20.1)

x,y参数:x,y值

width:宽度比例

facecolor柱状图里填充的颜色、edgecolor是边框的颜色

left-每个柱x轴左边界,bottom-每个柱y轴下边界 → bottom扩展即可化为甘特图 Gantt Chart

align:决定整个bar图分布,默认left表示默认从左边界开始绘制,center会将图绘制在中间位置

xerr/yerr :x/y方向error bar

for i,j in zip(x,y1): plt.text(i+0.3, j-0.15, "%.2f" %j, color = "k") for i,j in zip(x,y2): plt.text(i+0.3, j+0.05, "%.2f" %-j, color = "k")

  1. ![4.png](https://upload-images.jianshu.io/upload_images/2330091-6698eba5c413dd16.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. >##### 外嵌图表plt.table()
  3. 复制代码

外嵌图表plt.table()

table(cellText=None, cellColours=None,cellLoc='right', colWidths=None,rowLabels=None, rowColours=None, rowLoc='left',

colLabels=None, colColours=None, colLoc='center',loc='bottom', bbox=None)

data = [[ 66386, 174296, 75131, 577908, 32015], [ 58230, 381139, 78045, 99308, 160454], [ 89135, 80552, 152558, 497981, 603535], [ 78415, 81858, 150656, 193263, 69638], [139361, 331509, 343164, 781380, 52269]] columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail') rows = ['%d year' % x for x in (100, 50, 20, 10, 5)] df = pd.DataFrame(data,columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail'), index = ['%d year' % x for x in (100, 50, 20, 10, 5)]) print(df)

df.plot(kind='bar',grid = True,colormap='Blues_r',stacked=True,figsize=(8,3))

创建堆叠图

plt.table(cellText = data, cellLoc='center', cellColours = None, rowLabels = rows, rowColours = plt.cm.BuPu(np.linspace(0, 0.5,5))[::-1], # BuPu可替换成其他colormap colLabels = columns, colColours = plt.cm.Reds(np.linspace(0, 0.5,5))[::-1], rowLoc='right', loc='bottom')

cellText:表格文本

cellLoc:cell内文本对齐位置

rowLabels:行标签

colLabels:列标签

rowLoc:行标签对齐位置

loc:表格位置 → left,right,top,bottom

plt.xticks([])

不显示x轴标注

  1. ![5.png](https://upload-images.jianshu.io/upload_images/2330091-edf136a5ca2eaaac.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.8】 面积图、填图、饼图
  4. &ensp;&ensp;&ensp;&ensp;plt.plot.area()
  5. &ensp;&ensp;&ensp;&ensp;plt.fill(), plt.fill_between()
  6. &ensp;&ensp;&ensp;&ensp;plt.pie()
  7. >#####面积图
  8. 复制代码

面积图

fig, axes = plt.subplots(2, 1, figsize = (8,6)) df1 = pd.DataFrame(np.random.rand(10, 4), columns = ["a", "b", "c", "d"]) df2 = pd.DataFrame(np.random.randn(10, 4), columns = ["a", "b", "c", "d"])

df1.plot.area(colormap = "Greens_r", alpha = 0.5, ax = axes[0]) df2.plot.area(stacked = False, colormap = "Set2", alpha = 0.5, ax = axes[1])

使用Series.plot.area()和DataFrame.plot.area()创建面积图

stacked:是否堆叠,默认情况下,区域图被堆叠

为了产生堆积面积图,每列必须是正值或全部负值!

当数据有NaN时候,自动填充0,所以图标签需要清洗掉缺失值

  1. ![6.png](https://upload-images.jianshu.io/upload_images/2330091-1c9713e5bd3b2c70.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >#####填图
  4. 复制代码

填图

fig, axes = plt.subplots(2, 1, figsize = (8,6))

x = np.linspace(0, 1, 500) y1 = np.sin(4 * np.pi * x) * np.exp(-5 * x) y2 = -np.sin(4 * np.pi * x) * np.exp(-5 * x) axes[0].fill(x, y1, "r", alpha = 0.5, label = "y1") axes[0].fill(x, y2, "g", alpha = 0.5, label = "y2")

对函数与坐标轴之间的区域进行填充,使用fill函数

也可写成:plt.fill(x, y1, "r", x, y2, "g", alpha = 0.5)

x = np.linspace(0, 5 * np.pi, 1000) y1 = np.sin(x) y2 = np.sin(2 * x) axes[1].fill_between(x, y1, y2, color = "b", alpha = 0.5, label = "area")

填充两个函数之间的区域,使用fill_between函数

for i in range(2): axes[i].legend() axes[i].grid()

添加图例、网格

  1. ![7.png](https://upload-images.jianshu.io/upload_images/2330091-ff818d5d83205389.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 饼图 plt.pie()
  4. 复制代码

饼图 plt.pie()

plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,

radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, hold=None, data=None)

s = pd.Series(3 * np.random.rand(4), index = ["a", "b", "c", "d"], name = "series") plt.axis("equal") # 保证长宽相等 plt.pie(s, explode = [0.1, 0, 0, 0], labels = s.index, colors = ["r", "g", "b", "c"], autopct = ".2f%%", pctdistance = 0.6, labeldistance = 1.2, shadow = True, startangle = 0, radius = 1.5, frame = False) print(s)

第一个参数:数据

explode:指定每部分的偏移量

labels:标签

colors:颜色

autopct:饼图上的数据标签显示方式

pctdistance:每个饼切片的中心和通过autopct生成的文本开始之间的比例

labeldistance:被画饼标记的直径,默认值:1.1

shadow:阴影

startangle:开始角度

radius:半径

frame:图框

counterclock:指定指针方向,顺时针或者逆时针

  1. ![8.png](https://upload-images.jianshu.io/upload_images/2330091-3535ef5b8ad5ea2f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.9】 直方图
  4. &ensp;&ensp;&ensp;&ensp;plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None,
  5. histtype='bar', align='mid', orientation='vertical',rwidth=None, log=False, color=None, label=None,
  6. stacked=False, hold=None, data=None, **kwargs)
  7. >##### 直方图+密度图
  8. 复制代码

直方图+密度图

s = pd.Series(np.random.randn(1000)) s.hist(bins = 20, histtype = "bar", align = "mid", orientation = "vertical", alpha = 0.5, normed = True)

bin:箱子的宽度

normed 标准化

histtype 风格,bar,barstacked,step,stepfilled

orientation 水平还是垂直{"horizontal", "vertical"}

align:{"left", "mid", "right"}, optional(对齐方式)

s.plot(kind = "kde", style = "k--")

密度图

  1. ![9.png](https://upload-images.jianshu.io/upload_images/2330091-8bfe4378a095d1b0.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 堆叠直方图
  4. 复制代码

堆叠直方图

plt.figure(num=1) df = pd.DataFrame({"a": np.random.randn(1000) + 1, "b": np.random.randn(1000), "c": np.random.randn(1000) - 1, "d": np.random.randn(1000) - 2}, columns = ["a", "b", "c", "d"]) df.plot.hist(stacked = True, bins = 20, colormap = "Greens_r", alpha = 0.5, grid = True)

使用DataFrame.plot.hist()和Series.plot.hist()方法绘制

stacked:是否堆叠

df.hist(bins = 50)

生成多个直方图

  1. ![10.png](https://upload-images.jianshu.io/upload_images/2330091-1d112dffaeec039e.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.10】 散点图、矩阵散点图
  4. &ensp;&ensp;&ensp;&ensp;plt.scatter(), pd.scatter_matrix()
  5. >##### plt.scatter()散点图
  6. 复制代码

plt.scatter()散点图

plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None,

alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

plt.figure(figsize = (8,6)) x = np.random.randn(1000) y = np.random.randn(1000) plt.scatter(x, y, marker = ".", s = np.random.randn(1000)*100, cmap = "Reds", c = y, alpha = 0.8) plt.grid()

s:散点的大小

c:散点的颜色

vmin,vmax:高度设置,标量

cmap:colormap

  1. ![11.png](https://upload-images.jianshu.io/upload_images/2330091-ed03adea5caa2bab.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### pd.scatter_matrix()散点矩阵
  4. 复制代码

pd.scatter_matrix()散点矩阵

pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None,

grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)

df = pd.DataFrame(np.random.randn(100, 4), columns = ["a", "b", "c", "d"]) pd.scatter_matrix(df, figsize = (10,6), marker = "o", diagonal = "kde", alpha = 0.5, range_padding = 0.1)

diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图

range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点

  1. ![12.png](https://upload-images.jianshu.io/upload_images/2330091-bb622af1255631e9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.11】 极坐标图
  4. &ensp;&ensp;&ensp;&ensp;调用subplot()创建子图时通过设置projection='polar',便可创建一个极坐标子图,然后调用plot()在极坐标子图中绘图
  5. >##### 创建极坐标轴
  6. 复制代码

创建极坐标轴

s = pd.Series(np.arange(20)) theta = np.arange(0, 2*np.pi, 0.02) print(s.head()) print(theta[:10])

创建数据

fig = plt.figure(figsize = (8,4)) ax1 = plt.subplot(121, projection = "polar") ax2 = plt.subplot(122)

创建极坐标子图

还可以写:ax = fig.add_subplot(111, polar = True)

ax1.plot(theta, theta3, linestyle = "--", lw = 1) ax1.plot(s, linestyle = "--", marker = ".", lw = 2) ax2.plot(theta, theta3, linestyle = "--", lw = 1) ax2.plot(s) plt.grid()

创建极坐标图,参数1为角度(弧度制),参数2为value

lw -> 线宽

  1. ![13.png](https://upload-images.jianshu.io/upload_images/2330091-6bae534164a5c889.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 极坐标参数设置
  4. 复制代码

极坐标参数设置

theta = np.arange(0, 2*np.pi, 0.02) plt.figure(figsize = (8,4)) ax1 = plt.subplot(121, projection = "polar") ax2 = plt.subplot(122, projection = "polar") ax1.plot(theta, theta/6, "--", lw = 2) ax2.plot(theta, theta/6, "--", lw = 2)

创建极坐标子图ax

ax2.set_theta_direction(-1)

set_theta_direction():坐标轴正方向,默认1逆时针,如果是-1为顺时针

ax2.set_thetagrids(np.arange(0.0, 360.0, 90), ["a", "b","c", "d"]) ax2.set_rgrids(np.arange(0.2, 2, 0.4))

set_thetagrids():设置极坐标角度网格线显示及标签 -> 网格和标签数量一致

set_rgrids():设置极经网格线显示,其中参数必须是正数

ax2.set_theta_offset(np.pi/2)

set_theta_offset():设置角度偏移,逆时针,弧度制

ax2.set_rlim(0.2, 1.2) ax2.set_rmax(2) ax2.set_rticks(np.arange(0.1, 1.5, 0.2))

set_rlim():设置显示的极径范围

set_rmax():设置显示的极径最大值

set_rticks():设置极径网格线的显示范围

  1. ![14.png](https://upload-images.jianshu.io/upload_images/2330091-cba0c0dfe3f5b89d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 雷达图1 - 极坐标的折线图/填图 - plt.plot()
  4. 复制代码

雷达图1 - 极坐标的折线图/填图 - plt.plot()

plt.figure(figsize = (8,4))

ax1 = plt.subplot(111, projection = "polar") ax1.set_title("radar map\n") # 创建标题 ax1.set_rlim(0, 12)

data1 = np.random.randint(1, 10, 10) data2 = np.random.randint(1, 10, 10) data3 = np.random.randint(1, 10, 10) theta = np.arange(0, 2np.pi, 2np.pi/10)

创建数据

ax1.plot(theta, data1, ".--", label = "data1") ax1.fill(theta, data1, alpha = 0.2) ax1.plot(theta, data2, ".--", label = "data2") ax1.fill(theta, data2, alpha = 0.2) ax1.plot(theta, data3, ".--", label = "data3") ax1.fill(theta, data3, alpha = 0.2)

绘制雷达线

  1. ![15.png](https://upload-images.jianshu.io/upload_images/2330091-7e0e8309cc23c513.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 雷达图2 - 极坐标的折线图/填图 - plt.polar()
  4. 复制代码

雷达图2 - 极坐标的折线图/填图 - plt.polar()

首尾闭合

labels = np.array(["a", "b", "c", "d", "e", "f"]) # 标签 dataLenth = 6 # 数据长度 data1 = np.random.randint(0, 10, 6) data2 = np.random.randint(0, 10, 6) # 数据

angles = np.linspace(0, 2*np.pi, dataLenth, endpoint = False) # 分割圆周长 data1 = np.concatenate((data1, [data1[0]])) # 闭合 data2 = np.concatenate((data2, [data2[0]])) # 闭合 angles = np.concatenate((angles, [angles[0]])) # 闭合

plt.polar(angles, data1, "o-", linewidth = 1) # 做极坐标系 plt.fill(angles, data1, alpha = 0.25) # 填充 plt.polar(angles, data2, "o-", linewidth = 1) # 做极坐标系 plt.fill(angles, data2, alpha = 0.25) # 填充

plt.thetagrids(angles * 180/np.pi, labels) # 设置网格、标签 plt.ylim(0, 10) # polar的极值设置为ylim

  1. ![16.png](https://upload-images.jianshu.io/upload_images/2330091-10047c22bdc9648f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### 极轴图 - 极坐标的柱状图
  4. 复制代码

极轴图 - 极坐标的柱状图

plt.figure(figsize = (8,4))

ax1 = plt.subplot(111, projection = "polar") ax1.set_title("radar map\n") # 创建标题 ax1.set_rlim(0, 12)

data = np.random.randint(1, 10, 10) theta = np.arange(0, 2np.pi, 2np.pi / 10)

创建数据

bar = ax1.bar(theta, data, alpha = 0.5) for r,bar in zip(data, bar): bar.set_facecolor(plt.cm.jet(r/10.)) # 设置颜色 plt.thetagrids(np.arange(0.0, 360.0, 90), []) # 设置网格、标签(这里是空标签,则不显示内容)

  1. ![17.png](https://upload-images.jianshu.io/upload_images/2330091-26f1fbb919e53285.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. ####【课程3.12】 箱型图
  4. &ensp;&ensp;&ensp;&ensp;箱型图:又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图
  5. 包含一组数据的:最大值、最小值、中位数、上四分位数(Q3)、下四分位数(Q1)、异常值
  6. ① 中位数 → 一组数据平均分成两份,中间的数
  7. ② 上四分位数Q1 → 是将序列平均分成四份,计算(n+1)/4与(n-1)/4两种,一般使用(n+1)/4
  8. ③ 下四分位数Q3 → 是将序列平均分成四份,计算(1+n)/4*3=6.75
  9. ④ 内限 → T形的盒须就是内限,最大值区间Q3+1.5IQR,最小值区间Q1-1.5IQR (IQR=Q3-Q1
  10. ⑤ 外限 → T形的盒须就是内限,最大值区间Q3+3IQR,最小值区间Q1-3IQR (IQR=Q3-Q1
  11. ⑥ 异常值 → 内限之外 - 中度异常,外限之外 - 极度异常
  12. plt.plot.box(),plt.boxplot()
  13. >##### plt.plot.box()绘制
  14. 复制代码

plt.plot.box()绘制

fig, axes = plt.subplots(2, 1, figsize = (10,6)) df = pd.DataFrame(np.random.rand(10, 5), columns = ["A", "B", "C", "D", "E"]) color = dict(boxes = "DarkGreen", whiskers = "DarkOrange", medians = "DarkBlue", caps = "Gray")

箱型图着色

boxes → 箱线

whiskers → 分位数与error bar横线之间竖线的颜色

medians → 中位数线颜色

caps → error bar横线颜色

df.plot.box(ylim = [0, 1.2], grid = True, color = color, ax = axes[0])

color:样式填充

df.plot.box(vert = False, positions = [1, 4, 5, 6, 8], ax = axes[1], grid = True, color = color)

vert:是否垂直,默认True

position:箱型图占位

  1. ![18.png](https://upload-images.jianshu.io/upload_images/2330091-cd2b1e5a064efc2c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. >##### plt.boxplot()绘制
  4. 复制代码

plt.boxplot()绘制

pltboxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None,

usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None,

labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False,

zorder=None, hold=None, data=None)

df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E']) plt.figure(figsize=(10,4))

创建图表、数据

f = df.boxplot(sym = "o", # 异常点形状,参考marker vert = True, # 是否垂直 whis = 1.5, # IQR,默认1.5, 也可以设置区间比如[5, 95], 代表强制上下边缘为数据95%和5%位置 patch_artist = True, # 上下四分位框内是否填充,True会填充 meanline = False, showmeans = True, # 是否有均值线及其形状 showbox = True, # 是否显示箱线 showcaps = True, # 是否显示边缘线 showfliers = True, # 是否显示异常值 notch = False, # 中间箱体是否缺口 return_type = 'dict' # 返回类型为字典 ) plt.title("boxplot") print(f)

for box in f["boxes"]: box.set(color = "b", linewidth = 1) # 箱体边框颜色 box.set(facecolor = "b", alpha = 0.5) # 箱体内部填充颜色 for whisker in f["whiskers"]: whisker.set(color = "k", linewidth = 0.5, linestyle = "-") for cap in f["caps"]: cap.set(color = "red", linewidth = 2) for median in f["medians"]: median.set(color = "DarkBlue", linewidth = 2) for flier in f["fliers"]: flier.set(marker = "o", color = "y", alpha = 0.5)

boxes, 箱线

medians, 中位值的横线,

whiskers, 从box到error bar之间的竖线.

fliers, 异常值

caps, error bar横线

means, 均值的横线,

  1. ![19.png](https://upload-images.jianshu.io/upload_images/2330091-c0586120340b9bba.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. > #### plt.boxplot()绘制
  4. 复制代码

plt.boxplot()绘制

分组汇总

df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] ) df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B']) df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B']) print(df.head()) df.boxplot(by = 'X') df.boxplot(column=['Col1','Col2'], by=['X','Y'])

columns:按照数据的列分子图

by:按照列分组做箱型图

  1. ![20.png](https://upload-images.jianshu.io/upload_images/2330091-049847edf500f2d1.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  2. <br>
  3. #####最后:
  4. [以上完整代码](https://github.com/ChaoRenYuan/Python/tree/master/Python数据分析工具/图表绘制工具:Matplotlib)
  5. 复制代码

转载于:https://juejin.im/post/5b0e6a036fb9a009f87252ee

文章知识点与官方知识档案匹配,可进一步学习相关知识
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/755021
推荐阅读
相关标签
  

闽ICP备14008679号