当前位置:   article > 正文

【智能优化算法详解】粒子群算法PSO&量子粒子群算法QPSO_改进qpso

改进qpso

1.粒子群算法PSO

博主言简意赅总结-算法思想:大方向下个体自学习探索+群体交流共享   对比适应度找到最优点  

背景

粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization), 缩写为 PSO。粒子群优化算法是一种进化计算技术(evolutionary computation),1995 年由Eberhart博士和 kennedy 博士提出,源于对鸟群捕食的行为研究 。 该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。 粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。

粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,通过模拟鸟群或鱼群等自然界中的群体行为来求解优化问题。

在PSO算法中,将待优化的问题看作一个多维空间中的搜索问题,将解空间中的每个候选解看作一个粒子,并将每个粒子的位置视为该解的可能解。每个粒子都有自身的位置和速度,同时根据自己的经验和群体的经验来调整自己的位置和速度,从而找到最优解。

PSO算法的基本思想是,通过不断地更新粒子的速度和位置来搜索解空间。每个粒子根据自身的经验和群体的经验来更新自己的速度和位置。具体而言,每个粒子根据当前的速度和位置以及自身历史最优位置和群体历史最优位置来计算新的速度和位置。通过不断地迭代更新,粒子群逐渐向全局最优解靠拢。

PSO算法相比于其他优化算法具有简单、易于实现和收敛速度快等特点,适用于解决连续优化问题和离散优化问题。在实际应用中,PSO算法已经被广泛应用于函数优化、机器学习、数据挖掘等领域,并取得了较好的效果。

基础知识

1.某个粒子(点)的移动,是有大小,有方向的。

2.有大小,有方向的东西叫向量。

3.位置就是坐标。
如下图中A为全局最优点,接下来用数学表达式进行描述C点向A点移动过程。

1.C点坐标(2,3)变到A点坐标(1,1):
(1,1)=(2,3)+
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/783539
推荐阅读
相关标签