当前位置:   article > 正文

揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用_小提琴图

小提琴图

目录

已知数据集 tips

生成数据集并保存为CSV文件 

数据预览:

导入和预览数据

步骤1:绘制散点图(Scatter Plot)

步骤2:添加回归线(Regression Analysis)

步骤3:分类变量分析(Categorical Variables)

步骤4:箱线图(Box Plot)

步骤5:小提琴图(Violin Plot)

步骤6:绘制热力图(Heatmap)

 ​编辑

总结

1. 生成数据集并保存为CSV文件

2. 导入和预览数据

3. 绘制散点图(Scatter Plot)

4. 添加回归线(Regression Analysis)

5. 分类变量分析(Categorical Variables)

6. 绘制箱线图(Box Plot)

7. 绘制小提琴图(Violin Plot)

8. 绘制热力图(Heatmap)


 

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

 

专栏:数学建模学习笔记

python相关库的安装:pandas,numpy,matplotlib,statsmodels

总篇:【数学建模】—【新手小白到国奖选手】—【学习路线】

第一卷:Numpy

第二卷:Pandas

第三卷:Matplotlib

在数据科学和数学建模的过程中,数据可视化是非常重要的一环。通过可视化,我们能够更直观地理解数据的分布和关系,从而为后续的分析和建模打下坚实的基础。本篇文章将围绕一个具体的实例,详细讲解如何使用Seaborn库进行数据可视化。我们将使用Seaborn内置的数据集tips,该数据集包含了一些餐馆的小费数据。我们的目标是通过数据可视化,探索影响小费金额的因素,并尝试建立一个数学模型。

已知数据集 tips

tips 数据集包含以下几个主要字段:

  • total_bill: 总账单金额
  • tip: 小费金额
  • sex: 性别
  • smoker: 是否吸烟
  • day: 就餐日期
  • time: 就餐时间(午餐或晚餐)
  • size: 就餐人数

生成数据集并保存为CSV文件 

  1. import pandas as pd
  2. import numpy as np
  3. # 设置随机种子
  4. np.random.seed(0)
  5. # 生成数据
  6. n = 1000
  7. total_bill = np.round(np.random.uniform(5, 50, n), 2)
  8. tip = np.round(total_bill * np.random.uniform(0.1, 0.3, n), 2)
  9. sex = np.random.choice(['Male', 'Female'], n)
  10. smoker = np.random.choice(['Yes', 'No'], n)
  11. day = np.random.choice(['Thur', 'Fri', 'Sat', 'Sun'], n)
  12. time = np.random.choice(['Lunch', 'Dinner'], n)
  13. size = np.random.randint(1, 6, n)
  14. # 创建DataFrame
  15. tips = pd.DataFrame({
  16. 'total_bill': total_bill,
  17. 'tip': tip,
  18. 'sex': sex,
  19. 'smoker': smoker,
  20. 'day': day,
  21. 'time': time,
  22. 'size': size
  23. })
  24. # 保存数据集到CSV文件
  25. tips.to_csv('tips.csv', index=False)
  26. # 显示数据集的前几行
  27. print(tips.head())

数据预览

total_billtipsexsmokerdaytimesize
29.706.49FemaleNoFriLunch5
37.183.79FemaleYesThurLunch2
32.126.27FemaleNoThurLunch4
29.527.14FemaleNoFriLunch5
24.062.62FemaleYesSunDinner5

导入和预览数据

在生成数据后,我们导入必要的可视化库,并预览数据。

  1. import seaborn as sns
  2. import matplotlib.pyplot as plt
  3. import pandas as pd
  4. # 读取本地示例数据集
  5. tips = pd.read_csv('tips.csv')
  6. # 显示数据集的前几行
  7. print(tips.head())

详解:

  1. 导入必要的库

    • seaborn: 用于数据可视化的主要库。
    • matplotlib.pyplot: Seaborn是基于Matplotlib构建的,所以我们需要同时导入Matplotlib来进行图表的展示。
  2. 读取数据

    • 使用pandas.read_csv函数从CSV文件中读取数据。
  3. 预览数据

    • 使用print(tips.head())函数来显示数据集的前几行,帮助我们快速了解数据的结构和内容。

步骤1:绘制散点图(Scatter Plot)

我们首先绘制一个散点图,展示总账单(total_bill)与小费(tip)之间的关系。

  1. # 绘制散点图
  2. sns.scatterplot(data=tips, x='total_bill', y='tip')
  3. plt.title('Scatter plot of Total Bill vs Tip')
  4. plt.xlabel('Total Bill')
  5. plt.ylabel('Tip')
  6. plt.show()

 

  1. 绘制散点图

    • 使用seaborn.scatterplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
  2. 设置图表标题和标签

    • 使用plt.title设置图表标题。
    • 使用plt.xlabelplt.ylabel分别设置横轴和纵轴的标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

散点图是一种常用的图表类型,用于展示两个变量之间的关系。在这个例子中,使用seaborn.scatterplot函数绘制总账单(total_bill)与小费(tip)之间的散点图。通过散点图,可以直观地看到总账单和小费之间的关系。从图中可以看出,小费随总账单的增加而增加,但这种关系是否是线性的还需要进一步分析。

步骤2:添加回归线(Regression Analysis)

为了更好地了解总账单和小费之间的关系,我们可以使用Seaborn的 lmplot 函数来添加一条回归线。

  1. # 绘制带回归线的散点图
  2. sns.lmplot(data=tips, x='total_bill', y='tip')
  3. plt.title('Total Bill vs Tip with Regression Line')
  4. plt.xlabel('Total Bill')
  5. plt.ylabel('Tip')
  6. plt.show()

 

  1. 绘制带回归线的散点图

    • 使用seaborn.lmplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
    • lmplot函数不仅绘制散点图,还会自动添加一条回归线,用于展示两个变量之间的线性关系。
  2. 设置图表标题和标签

    • 同样使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

回归分析是一种统计方法,用于研究两个变量之间的关系。在这个例子中,使用Seaborn的lmplot函数来绘制带有回归线的散点图。通过添加回归线,可以更清楚地看到总账单和小费之间的线性关系。这条回归线表示小费随总账单增加的趋势,图中还会显示回归线的置信区间。

步骤3:分类变量分析(Categorical Variables)

接下来,我们分析性别、吸烟情况等分类变量对小费的影响。

  1. # 使用hue参数根据性别绘制不同颜色的散点图
  2. sns.scatterplot(data=tips, x='total_bill', y='tip', hue='sex')
  3. plt.title('Total Bill vs Tip by Gender')
  4. plt.xlabel('Total Bill')
  5. plt.ylabel('Tip')
  6. plt.show()

 

  1. 根据分类变量绘制散点图

    • 使用seaborn.scatterplot函数,通过hue参数指定分类变量(例如性别),从而根据不同类别绘制不同颜色的点。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

分类变量(如性别、吸烟情况等)在数据分析中非常重要,因为它们能够提供关于数据分布的更多信息。在这个例子中,使用seaborn.scatterplot函数,根据性别绘制不同颜色的散点图。通过这种方式,可以看到性别对总账单和小费关系的影响。例如,可以观察到男性和女性在小费上的差异。

步骤4:箱线图(Box Plot)

箱线图可以帮助我们了解数据的分布及其异常值。

  1. # 绘制箱线图展示不同日期的总账单分布
  2. sns.boxplot(data=tips, x='day', y='total_bill')
  3. plt.title('Box plot of Total Bill by Day')
  4. plt.xlabel('Day')
  5. plt.ylabel('Total Bill')
  6. plt.show()

 

  1. 绘制箱线图

    • 使用seaborn.boxplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 箱线图可以展示数据的中位数、四分位数及其异常值。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

箱线图是一种统计图表,用于展示数据分布的五个统计量:最小值、第一四分位数、中位数、第三四分位数和最大值。箱线图还可以展示异常值。在这个例子中,使用seaborn.boxplot函数绘制不同日期(day)的总账单(total_bill)分布。通过箱线图,可以看到不同日期的总账单分布情况,并识别出哪些数据点是异常值。例如,可以观察到在某些日期,总账单的分布范围较广,而在另一些日期,分布范围较窄。

步骤5:小提琴图(Violin Plot)

小提琴图结合了箱线图和核密度图,可以提供关于数据分布的更多信息。

  1. # 绘制小提琴图展示不同日期的小费分布
  2. sns.violinplot(data=tips, x='day', y='tip')
  3. plt.title('Violin plot of Tip by Day')
  4. plt.xlabel('Day')
  5. plt.ylabel('Tip')
  6. plt.show()

  1. 绘制小提琴图

    • 使用seaborn.violinplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 小提琴图展示了数据分布的核密度估计,并结合了箱线图的元素。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

小提琴图结合了箱线图和核密度图的优点,可以更详细地展示数据分布的特征。在这个例子中,使用seaborn.violinplot函数绘制不同日期(day)的小费(tip)分布。通过小提琴图,可以看到不同日期的小费分布情况,并识别出数据分布的密度和异常值。例如,可以观察到在某些日期,小费的分布较为集中,而在另一些日期,分布较为分散。

步骤6:绘制热力图(Heatmap)

热力图适合展示矩阵数据,比如相关矩阵。例如,绘制数据集的相关矩阵:

  1. # 选择数值列
  2. numeric_tips = tips.select_dtypes(include='number')
  3. # 计算相关矩阵并绘制热力图
  4. corr = numeric_tips.corr()
  5. plt.figure(figsize=(10, 8))
  6. sns.heatmap(corr, annot=True, cmap='coolwarm', linewidths=0.5)
  7. plt.title('Heatmap of Correlation Matrix')
  8. plt.show()

  1. 计算相关矩阵

    • 使用DataFrame.corr()函数计算数据集中数值变量之间的相关系数。
  2. 绘制热力图

    • 使用seaborn.heatmap函数绘制热力图。
    • corr:相关矩阵,作为热力图的数据输入。
    • annot=True:在每个单元格中显示相关系数的数值。
    • cmap='coolwarm':设置热力图的颜色映射,coolwarm颜色映射使得正相关和负相关的数据点能够通过颜色区分开来。
    • linewidths=0.5:设置每个单元格之间的间隔线宽度。
  3. 设置图表大小:使用plt.figure(figsize=(10, 8))设置图表的大小,确保图表清晰可读。

  4. 设置图表标题:使用plt.title设置图表的标题。

  5. 显示图表:使用plt.show()函数来显示热力图。

相关矩阵热力图解释:

  • 对角线:热力图的对角线上的值都是1,因为每个变量与自身的相关系数都是1。
  • 变量之间的相关性:热力图的非对角线单元格显示了不同变量之间的相关系数。颜色的深浅表示相关性强弱,颜色的方向(冷暖)表示正相关或负相关。

通过这些详细的步骤,我们能够全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

 

总结

1. 生成数据集并保存为CSV文件

首先,我们生成了一个包含餐馆小费信息的模拟数据集,并将其保存为CSV文件。数据集包含以下字段:total_billtipsexsmokerdaytimesize

2. 导入和预览数据

使用Pandas库读取本地CSV文件,并预览数据集的前几行,以了解数据的结构和内容。

3. 绘制散点图(Scatter Plot)

使用Seaborn的scatterplot函数绘制散点图,展示总账单(total_bill)与小费(tip)之间的关系。

4. 添加回归线(Regression Analysis)

使用Seaborn的lmplot函数在散点图上添加回归线,以更清晰地展示总账单和小费之间的线性关系。

5. 分类变量分析(Categorical Variables)

使用scatterplot函数的hue参数,根据性别绘制不同颜色的散点图,分析性别对总账单和小费关系的影响。

6. 绘制箱线图(Box Plot)

使用Seaborn的boxplot函数绘制箱线图,展示不同日期的总账单分布,帮助识别数据的中位数、四分位数及其异常值。

7. 绘制小提琴图(Violin Plot)

使用Seaborn的violinplot函数绘制小提琴图,结合箱线图和核密度图,提供更多关于数据分布的信息。

8. 绘制热力图(Heatmap)

计算数据集中数值变量之间的相关矩阵,使用Seaborn的heatmap函数绘制热力图,直观地展示各变量之间的相关性。

通过这些步骤,可以全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/812929
推荐阅读
相关标签
  

闽ICP备14008679号