当前位置:   article > 正文

LLM之Agent初探_llm,agent是

llm,agent是

Agent是什么?

Agent一词起源于拉丁语中的Agere,意思是“to do”。在LLM语境下,Agent可以理解为在某种能自主理解、规划决策、执行复杂任务的智能体。

Agent并非ChatGPT升级版,它不仅告诉你“如何做”,更会帮你去做。如果Copilot是副驾驶,那么Agent就是主驾驶。

自主Agent是由人工智能驱动的程序,当给定目标时,它们能够自己创建任务、完成任务、创建新任务、重新确定任务列表的优先级、完成新的顶级任务,并循环直到达到目标。

最直观的公式:Agent = LLM+Planning+Feedback+Tool use

Agent决策流程

感知(Perception)→ 规划(Planning)→ 行动(Action)

  • • 感知(Perception)是指Agent从环境中收集信息并从中提取相关知识的能力。

  • • 规划(Planning)是指Agent为了某一目标而作出的决策过程。

  • • 行动(Action)是指基于环境和规划做出的动作。

Agent通过感知从环境中收集信息并提取相关知识。然后通过规划为了达到某个目标做出决策。最后,通过行动基于环境和规划做出具体的动作。Policy是Agent做出行动的核心决策,而行动又为进一步感知提供了观察的前提和基础,形成了一个自主的闭环学习过程。

人是如何做事的?

在工作中,我们通常会用到PDCA思维模型。基于PDCA模型,我们可以将完成一项任务进行拆解,按照作出计划、计划实施、检查实施效果,然后将成功的纳入标准,不成功的留待下一循环去解决。目前,这是人们高效完成一项任务非常成功的经验总结。

请添加图片描述

如何让LLM替代人去做事?

要让LLM替代人去做事,我们可以基于PDCA模型进行 规划、执行、评估和反思。

规划能力(Plan)-> 分解任务:Agent大脑把大的任务拆解为更小的,可管理的子任务,这对有效的、可控的处理好大的复杂的任务效果很好。

执行能力(Done)-> 使用工具:Agent能学习到在模型内部知识不够时(比如:在pre-train时不存在,且之后没法改变的模型weights)去调用外部API,比如:获取实时的信息、执行代码的能力、访问专有的信息知识库等等。这是一个典型的平台+工具的场景,我们要有生态意识,即我们构建平台以及一些必要的工具,然后大力吸引其他厂商提供更多的组件工具,形成生态。

评估能力(Check)-> 确认执行结果:Agent要能在任务正常执行后判断产出物是否符合目标,在发生异常时要能对异常进行分类(危害等级),对异常进行定位(哪个子任务产生的错误),对异常进行原因分析(什么导致的异常)。

反思能力(Adjust)-> 基于评估结果重新规划:Agent要能在产出物符合目标时及时结束任务,是整个流程最核心的部分;同时,进行归因分析总结导致成果的主要因素,另外,Agent要能在发生异常或产出物不符合目标时给出应对措施,并重新进行规划开启再循环过程。

下面,来看几个具体的案例

让LLM能够获取当前时间

首先,我们定义一个获取当前时间的tool

from langchain.tools import Tool  
  
def get_time(input=""):  
    return datetime.datetime.now()  
  
  
#定义获取当前时间  
time_tool = Tool(  
    name='get current time',  
    func= get_time,  
    description="用来获取当前时间. input should be 'time'"""  
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

name: 工具名称 func: 工具的实现 description: 工具的描述,一定要是准确的描述,该部分会加入到LLM的prompt中,若描述不准确,LLM可能无法准确调用

我们将langchain中内置的prompt打印出来看看

    Respond to the human as helpfully and accurately as possible. You have access to the following tools:  
  
    get current time: 用来获取当前时间. input should be 'time', args: {{'tool_input': {{'type': 'string'}}}}  
  
    Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).  
  
    Valid "action" values: "Final Answer" or get current time  
  
    Provide only ONE action per $JSON_BLOB, as shown:  
  
    ```
    {{  
    "action": $TOOL_NAME,  
    "action_input": $INPUT  
    }}  
    ```
  
    Follow this format:  
  
    Question: input question to answer  
    Thought: consider previous and subsequent steps  
    Action:  
    ```
    $JSON_BLOB  
    ```
    Observation: action result  
    ... (repeat Thought/Action/Observation N times)  
    Thought: I know what to respond  
    Action:  
    ```
    {{  
    "action": "Final Answer",  
    "action_input": "Final response to human"  
    }}  
    ```
  
    Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.  
    Thought:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

从以上prompt可以看出,我们定义好的获取当前时间的工具函数,也被包裹在里面,并且,他还帮我们生成了一个输入参数的格式限制prompt:args: {{‘tool_input’: {{‘type’: ‘string’}}}}

我们接着看:

    Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).  
  
    Valid "action" values: "Final Answer" or get current time  
  
    Provide only ONE action per $JSON_BLOB, as shown:  
  
    ```
    {{  
    "action": $TOOL_NAME,  
    "action_input": $INPUT  
    }}  
    ```
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

这段prompt要求LLM生成的action需要是一个jsonb的格式,并且包含两个key:actionaction_input,分别对应工具名和工具的输入,并且给了一个样例。

并且,有效的action不仅包含了get current time,还多了个Final Answer

我们来用一个实际的问题试试:

question = "现在几点?"  
  
result = agent.run(question)  
print(result)
  • 1
  • 2
  • 3
  • 4

输出

当前时间是2024年01月02日11点12分01秒。
  • 1

对比下未使用tool的输出:

我无法回答这个问题,因为我没有实时访问实际的时间或日期。我是根据我的训练数据提供信息的。
  • 1

可见,当不使用tool时,LLM是无法知道当前时间的

为了更容易理解Agent是如何工作的,我打印出了中间过程的日志:

    Thought: 需要使用工具获取当前时间  
    Action:  
    ```
    {  
    "action": "get current time",  
    "action_input": {  
        "type": "string"  
    }  
    }  
    ```
  
    Observation: 2024-01-02 11:44:16.900356  
  
    我现在知道了当前时间  
    Action:  
    ```
    {  
    "action": "Final Answer",  
    "action_input": "当前时间是2024年01月02日11点44分16秒。"  
    }  
    ```
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

首先,LLM先思考应该调用哪个工具,并且知道应该调用get current time,且给出了输入参数的类型

接着,拿到了LLM输出的结果,即:Observation: 2024-01-02 11:44:16.900356

最后,LLM知道了答案,再次调用工具:Final Answer输出答案

让LLM拥有计算器的功能

langchain内置了许多工具,使用load_tools函数即可加载,这次我们不自己定义tool了,我们使用langchain内置的工具试试。

    tools = load_tools(tool_names=["llm-math"], llm=llm)  
  
    tools.append(time_tool)
  • 1
  • 2
  • 3

看看llm-math的定义

def _get_llm_math(llm: BaseLanguageModel) -> BaseTool:  
    return Tool(  
        name="Calculator",  
        description="Useful for when you need to answer questions about math.",  
        func=LLMMathChain.from_llm(llm=llm).run,  
        coroutine=LLMMathChain.from_llm(llm=llm).arun,  
    )  

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

我们看看此时的prompt

    Respond to the human as helpfully and accurately as possible. You have access to the following tools:  
  
    Calculator: Useful for when you need to answer questions about math., args: {{'tool_input': {{'type': 'string'}}}}  
    get current time: 用来获取当前时间. input should be 'now', args: {{'tool_input': {{'type': 'string'}}}}  
  
    Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).  
  
    Valid "action" values: "Final Answer" or Calculator, get current time  
  
    Provide only ONE action per $JSON_BLOB, as shown:  
  
    ```
    {{  
    "action": $TOOL_NAME,  
    "action_input": $INPUT  
    }}  
    ```
  
    Follow this format:  
  
    Question: input question to answer  
    Thought: consider previous and subsequent steps  
    Action:  
    ```
    $JSON_BLOB  
    ```
    Observation: action result  
    ... (repeat Thought/Action/Observation N times)  
    Thought: I know what to respond  
    Action:  
    ```
    {{  
    "action": "Final Answer",  
    "action_input": "Final response to human"  
    }}  
    ```
  
    Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.  
    Thought:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

相比上一个例子,多了一个名叫Calculator的prompt: Calculator: Useful for when you need to answer questions about math., args: {{'tool_input': {{'type': 'string'}}}}

实际上就是多了个tool name 和 tool description

来试试效果

question = "789*324353等于多少?"  
  
result = agent.run(question)  
print(result)
  • 1
  • 2
  • 3
  • 4

输出

255914517
  • 1

对比下未使用tool的输出:

789 * 324353 = 324353 * (700 + 80 + 9) = 324353 * 700 + 324353 * 80 + 324353 * 9 = 227047100 + 25948240 + 2921177 = 252995340 + 2921177 = 255916517
  • 1

未使用tool虽然没有获得正确答案,但好在知道将数学问题分解,但我这里使用的是qwen-72b-chat-int4,要是小一点的模型,就不一定有这样的效果了。

以下是baichuan2-13b-chat的输出

789乘以324353等于259553427。
  • 1

让LLM获取实时天气

定义tool:

China-City-List-latest.csv文件从(https://github.com/qwd/LocationList/blob/master/China-City-List-latest.csv下载

和风天气API key需要在https://dev.qweather.com注册获取,自行google

def getLocationId(city):  
    d = collections.defaultdict(str)  
    try:  
        df = pd.read_csv("./data/datasets/virus/China-City-List-latest.csv", encoding='utf-8')  
    except Exception as e:  
        print(e)  
    for i, row in df.iterrows():  
        d[row['Location_Name_ZH']] = row['Location_ID']  
    return d[city] if city in d else ''  
  
  
def get_weather(location):  
    key = "你的和风天气API key"  
    id = getLocationId(location)  
    if not id:  
        return "没有这个城市"  
    base_url = 'https://devapi.qweather.com/v7/weather/now?'  
    params = {'location': id, 'key': key, 'lang': 'zh'}  
    response = requests.get(base_url, params=params)  
    data = response.json()  
    if data["code"] != "200":  
        return "没有这个城市的天气情况"  
    return get_weather_info(data)  
  
  
def get_weather_info(info):  
    if info["code"] != "200":  
        return "没有这个城市的天气情况"  
    # result = f'现在天气{info["hourly"][0]["text"]},温度 {info["hourly"][0]["temp"]} 度, 未来 24 小时天气{info["hourly"][-1]["text"]},温度 {info["hourly"][-1]["temp"]} 度。'  
  
    result = f"""   
现在天气: {info["now"]["text"]}  
温度: {info["now"]["temp"]} 摄氏度  
风向: {info["now"]["windDir"]}  
风力等级: {info["now"]["windScale"]}  
风速: {info["now"]["windSpeed"]} 公里/小时  
"""  
  
    return result  
  
  
weather_tool = Tool(  
    name='get current weather',  
    func= get_weather,  
    description="用来获取当地的天气信息,输入应该是城市名称"""  
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

来试试效果

question = "杭州今天能穿短袖吗?"  
  
result = agent.run(question)  
print(result)
  • 1
  • 2
  • 3
  • 4

输出

不建议穿短袖,今天杭州有霾,温度为10摄氏度。
  • 1

对比下未使用tool的输出:

作为一个语言模型,我无法获取实时的天气信息。请您自行查询杭州当前的天气情况,并根据气温和个人体质决定是否穿短袖。
  • 1

以上工具函数,输入参数均只有一个,接下来看看,当输入参数有多个时,应如何处理

tool有多个输入参数的场景

定义tool:

class FutureWeatherInput(BaseModel):  
    location: str = Field(description="城市名称")  
    date: str = Field(description="日期,格式:yyyy-mm-dd,如:2021-11-15")  
  
  
def get_future_weather(location, date):  
    key = "你的和风天气API key"  
    id = getLocationId(location)  
    if not id:  
        return "没有这个城市"  
    base_url = 'https://devapi.qweather.com/v7/weather/7d?'  
    params = {'location': id, 'key': key, 'lang': 'zh'}  
    response = requests.get(base_url, params=params)  
    data = response.json()  
    if data["code"] != "200":  
        return "没有这个城市的天气情况"  
      
    result = {}  
    daily = data["daily"]  
    for item in daily:  
        fxDate = item["fxDate"]  
  
        weather_text = f"""   
天气: {item["textDay"]}  
最高温度: {item["tempMax"]} 摄氏度  
最低温度: {item["tempMin"]} 摄氏度  
风向: {item["windDirDay"]}  
风力等级: {item["windScaleDay"]}  
风速: {item["windSpeedDay"]} 公里/小时  
"""  
        result[fxDate] = weather_text  
  
    return result[date]  
  
  
future_weather_tool = StructuredTool(  
    name='get future weather',  
    func= get_future_weather,  
    description="用来获取当地今天和未来六天的天气信息。""",  
    args_schema=FutureWeatherInput  
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

当tool需要多个输入参数时,我们不再使用Tool类,而使用StructuredTool类,它的定义如下(从langchain源码里可以找到)

class StructuredTool(BaseTool):  
    """Tool that can operate on any number of inputs."""  
  
    description: str = ""  
    args_schema: Type[BaseModel] = Field(..., description="The tool schema.")  
    """The input arguments' schema."""  
    func: Optional[Callable[..., Any]]  
    """The function to run when the tool is called."""  
    coroutine: Optional[Callable[..., Awaitable[Any]]] = None  
    """The asynchronous version of the function."""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

且通过pydantic的BaseModel来约束输入,对输入参数的description也是必要的,因为该description也会传到prompt中

Calculator: Useful for when you need to answer questions about math., args: {{'tool_input': {{'type': 'string'}}}}  
get current time: 用来获取当前时间. input should be 'now'。当需要获取今天、明天、后天等的日期时,你应该调用此函数获取今天的日期, args: {{'tool_input': {{'type': 'string'}}}}  
get current weather: 用来获取当地当天的天气信息,输入应该是城市名称, args: {{'tool_input': {{'type': 'string'}}}}  
get future weather: 用来获取当地今天和未来六天的天气信息。, args: {{'location': {{'title': 'Location', 'description': '城市名称', 'type': 'string'}}, 'date': {{'title': 'Date', 'description': '日期,格式:yyyy-mm-dd,如:2021-11-15', 'type': 'string'}}}}  
  
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).  
  
Valid "action" values: "Final Answer" or Calculator, get current time, get current weather, get future weather
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

来试试效果

question = "今天是几号?明天准备去杭州旅游,能穿短袖吗?"  
  
result = agent.run(question)  
print(result)
  • 1
  • 2
  • 3
  • 4

输出

明天杭州的天气预报为晴,最高温度为13摄氏度,最低温度为2摄氏度,建议携带一些保暖衣物。
  • 1

让LLM实现联网搜索

定义tool:

def get_internet_content(query):  
    params = {  
        "engine": "baidu",  
        "q": query,  
        "api_key": "你的 Serpapi key"  
    }  
  
    search = BaiduSearch(params)  
    result = search.get_json()["organic_results"][0]["snippet"]  
    return result  
  
baidu_search_tool = Tool(  
    name='百度搜索',  
    func= get_internet_content,  
    description="用来从互联网上获取当前时事信息,输入应该是搜索query"""   
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

Serpapi key需要你自行注册获取,地址https://serpapi.com/

来试试效果

question = "小米su7什么时候发布"  
  
result = agent.run(question)  
print(result)
  • 1
  • 2
  • 3
  • 4

输出

小米su7预计将于2024年上半年量产上市。
  • 1

Agent之所以能回答该问题,是因为我们使用百度搜索获取了小米su7 发布日期的相关信息,LLM再基于该信息总结答案,相当于外挂了一个知识库,只不过这个知识库不再是我们本地的数据库,而是百度搜索

到这里你会发现,其实不同的工具,就是不同的函数而已,要想Agent能够适配自己的业务场景,只是把这些函数换成了自己业务相关的函数或接口。

以上LLM使用的均是qwen-72b-chat-int4,同时也对比过baichuan2-13b-chat、yi-34b-chat,qwen-14b-chat,其中baichuan2-13b-chat效果最差,基本无法理解如何调用tool,yi-34b-chat不如qwen-14b-chat,qwen-72b-chat-int4效果最好,个人猜测主要原因是因为qwen系列的模型在专门的工具调用数据集上训练过,因此效果要比其他模型要好,且官方开源了一个大模型工具调用数据集,地址: MSAgent-Bench大模型工具调用数据集

完整代码

import collections  
import random  
import requests  
import datetime  
import pandas as pd  
from langchain.tools import Tool, StructuredTool  
from langchain.agents import initialize_agent  
from langchain.chat_models import ChatOpenAI  
from langchain.agents import load_tools  
from langchain.agents import AgentType  
  
from pydantic import BaseModel, Field  
from serpapi.baidu_search import BaiduSearch  
  
  
def getLocationId(city):  
    d = collections.defaultdict(str)  
    try:  
        df = pd.read_csv("./data/datasets/virus/China-City-List-latest.csv", encoding='utf-8')  
    except Exception as e:  
        print(e)  
    for i, row in df.iterrows():  
        d[row['Location_Name_ZH']] = row['Location_ID']  
    return d[city] if city in d else ''  
  
  
def get_weather(location):  
    key = "你的和风天气API key"  
    id = getLocationId(location)  
    if not id:  
        return "没有这个城市"  
    base_url = 'https://devapi.qweather.com/v7/weather/now?'  
    params = {'location': id, 'key': key, 'lang': 'zh'}  
    response = requests.get(base_url, params=params)  
    data = response.json()  
    if data["code"] != "200":  
        return "没有这个城市的天气情况"  
    return get_weather_info(data)  
  
  
class FutureWeatherInput(BaseModel):  
    location: str = Field(description="城市名称")  
    date: str = Field(description="日期,格式:yyyy-mm-dd,如:2021-11-15")  
  
  
def get_future_weather(location, date):  
    key = "你的和风天气API key"  
    id = getLocationId(location)  
    if not id:  
        return "没有这个城市"  
    base_url = 'https://devapi.qweather.com/v7/weather/7d?'  
    params = {'location': id, 'key': key, 'lang': 'zh'}  
    response = requests.get(base_url, params=params)  
    data = response.json()  
    if data["code"] != "200":  
        return "没有这个城市的天气情况"  
      
    result = {}  
    daily = data["daily"]  
    for item in daily:  
        fxDate = item["fxDate"]  
  
        weather_text = f"""   
天气: {item["textDay"]}  
最高温度: {item["tempMax"]} 摄氏度  
最低温度: {item["tempMin"]} 摄氏度  
风向: {item["windDirDay"]}  
风力等级: {item["windScaleDay"]}  
风速: {item["windSpeedDay"]} 公里/小时  
"""  
        result[fxDate] = weather_text  
  
    return result[date]  
  
      
  
  
def get_weather_info(info):  
    if info["code"] != "200":  
        return "没有这个城市的天气情况"  
    # result = f'现在天气{info["hourly"][0]["text"]},温度 {info["hourly"][0]["temp"]} 度, 未来 24 小时天气{info["hourly"][-1]["text"]},温度 {info["hourly"][-1]["temp"]} 度。'  
  
    result = f"""   
现在天气: {info["now"]["text"]}  
温度: {info["now"]["temp"]} 摄氏度  
风向: {info["now"]["windDir"]}  
风力等级: {info["now"]["windScale"]}  
风速: {info["now"]["windSpeed"]} 公里/小时  
"""  
    return result  
  
  
def get_internet_content(query):  
    params = {  
        "engine": "baidu",  
        "q": query,  
        "api_key": "你的SerpApi key"  
    }  
  
    search = BaiduSearch(params)  
    result = search.get_json()["organic_results"][0]["snippet"]  
    return result  
  
  
  
def test_agent_example():  
    model = "Qwen-72B-Chat-Int4"  
    api_key = "EMPTY"  
    base_url = "http://localhost:8000/v1"  
  
    llm = ChatOpenAI(model=model, temperature=0, api_key=api_key, base_url=base_url)  
  
  
    print(get_weather("北京"))  
  
  
    def get_time(input=""):  
        return datetime.datetime.now()  
      
    #定义获取当前时间  
    time_tool = Tool(  
        name='get current time',  
        func= get_time,  
        description="用来获取当前时间. input should be 'now'。当需要获取今天、明天、后天等的日期时,你应该调用此函数获取今天的日期"""  
    )  
  
    weather_tool = Tool(  
        name='get current weather',  
        func= get_weather,  
        description="用来获取当地当天的天气信息,输入应该是城市名称"""  
    )  
  
    future_weather_tool = StructuredTool(  
        name='get future weather',  
        func= get_future_weather,  
        description="用来获取当地今天和未来六天的天气信息。""",  
        args_schema=FutureWeatherInput  
    )  
  
  
  
    tools = load_tools(tool_names=["llm-math"], llm=llm)  
  
    tools.extend([time_tool, weather_tool, future_weather_tool])  
  
  
    #创建代理  
    agent = initialize_agent(  
        agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,  
        tools=tools,  
        llm=llm,  
        verbose=True,  
        max_iterations=5,  
        handle_parsing_errors=True  
    )  
  
    print(agent.agent.llm_chain.prompt[0].prompt.template)  
  
    question = "今天是几号?明天准备去杭州旅游,能穿短袖吗?"  
  
    result = agent.run(question)  
    print("----"*20)  
    print(result)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163

总结

1、tool description 非常重要,没有写好description,agent无法理解在什么情况下应该调用该tool

2、输入参数的 description 非常重要,想要LLM生成给定格式的输入参数,可以给一些few shot样例

3、agent本质还是prompt工程,极大程度上依赖于LLM的参数量。小模型无法理解prompt,无法生成给定格式的输入参数,导致tool函数不能被正常调用

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/853698
推荐阅读
相关标签
  

闽ICP备14008679号