赞
踩
https://www.youtube.com/watch?v=oxTVzGwKeoU
https://www.youtube.com/watch?v=oxTVzGwKeoU
from unsloth import FastLanguageModel import torch from trl import SFTTrainer from transformers import TrainingArguments max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/mistral-7b-bnb-4bit", "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "unsloth/llama-2-7b-bnb-4bit", "unsloth/gemma-7b-bnb-4bit", "unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b "unsloth/gemma-2b-bnb-4bit", "unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b "unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3 ] # More models at https://huggingface.co/unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/llama-3-8b-bnb-4bit", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) model = FastLanguageModel.get_peft_model( model, r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 3407, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN def formatting_prompts_func(examples): instructions = examples["instruction"] inputs = examples["input"] outputs = examples["output"] texts = [] for instruction, input, output in zip(instructions, inputs, outputs): # Must add EOS_TOKEN, otherwise your generation will go on forever! text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN texts.append(text) return { "text" : texts, } pass from datasets import load_dataset file_path = "/home/Ubuntu/alpaca_gpt4_data_zh.json" dataset = load_dataset("json", data_files={"train": file_path}, split="train") dataset = dataset.map(formatting_prompts_func, batched = True,) trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, max_steps = 60, learning_rate = 2e-4, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 3407, output_dir = "outputs", ), ) trainer_stats = trainer.train() model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q4_k_m") model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q8_0") model.save_pretrained_gguf("dir", tokenizer, quantization_method = "f16")
使用:
在这里插入图片描述
https://www.bilibili.com/video/BV1AH4y137tR/
1.准备数据 json 格式 数据集文件可以是多个json 文件
2.官网下载模型已微调的中文模型
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat-GGUF-8bit/tree/v1
3. 微调工具: peft / llamafactory /unsloth
4. 微调方式: lora 微调之后并不是模型的所有,需要再合并上原始的模型 (官网有脚本案例)
5. 量化 llama.cpp (github) 注意: 进入llama.cpp 文件的格式都必须是.gguf 的格式,有工具可以进行转换
1)格式转化
2) quantize.exe
6. 部署 ollama lmstudio
ollama: modefile文件里修改模型路径
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。