赞
踩
最近学习hugging face里面的物体检测模型,发现一个方便快捷的工具!
Gradio 是通过友好的 Web 界面演示机器学习模型的最快方式,以便任何人都可以在任何地方使用它!
官网如下:
别人的部署到hugging face的space服务器案例如下:(可全网任意访问-)
https://huggingface.co/spaces/ClassCat/DETR-Object-Detection
案例对应的代码如下:
https://huggingface.co/spaces/ClassCat/DETR-Object-Detection/tree/main
自己的物检测及体识别的代码(亲测成功):
- import torch
- from transformers import pipeline
-
- from PIL import Image
-
- import matplotlib.pyplot as plt
- import matplotlib.patches as patches
-
- from random import choice
- import io
-
- detector50 = pipeline(model="facebook/detr-resnet-50")#自动下载模型,大约200MB
-
- # detector101 = pipeline(model="facebook/detr-resnet-101")
-
-
- import gradio as gr
-
- COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
- "#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
- "#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
-
- fdic = {
- "family" : "Arial",
- "style" : "italic",
- "size" : 15,
- "color" : "yellow",
- "weight" : "bold"
- }
-
-
- def get_figure(in_pil_img, in_results):
- plt.figure(figsize=(16, 10))
- plt.imshow(in_pil_img)
- #pyplot.gcf()
- ax = plt.gca()
-
- for prediction in in_results:
- selected_color = choice(COLORS)
-
- x, y = prediction['box']['xmin'], prediction['box']['ymin'],
- w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
-
- ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
- ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
-
- plt.axis("off")
-
- return plt.gcf()
-
-
-
-
-
- def infer(model, in_pil_img):
-
- results = None
- if model == "detr-resnet-101":
- results = detector101(in_pil_img)
- else:
- results = detector50(in_pil_img)
-
- figure = get_figure(in_pil_img, results)
-
- buf = io.BytesIO()
- figure.savefig(buf, bbox_inches='tight')
- buf.seek(0)
- output_pil_img = Image.open(buf)
-
- return output_pil_img
-
-
- with gr.Blocks(title="DETR Object Detection - ClassCat",
- css=".gradio-container {background:lightyellow;}"
- ) as demo:
- #sample_index = gr.State([])
-
- gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>""")
-
- gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")
-
- model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
-
- gr.HTML("""<br/>""")
- gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""")
- gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")
-
- with gr.Row():
- input_image = gr.Image(label="Input image", type="pil")
- output_image = gr.Image(label="Output image with predicted instances", type="pil")
-
- gr.Examples(['samples/cats.jpg', 'samples/detectron2.png'], inputs=input_image)
-
- gr.HTML("""<br/>""")
- gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")
-
- send_btn = gr.Button("Infer")
- send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])
-
- gr.HTML("""<br/>""")
- gr.HTML("""<h4 style="color:navy;">Reference参考链接</h4>""")
- gr.HTML("""<ul>""")
- gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")
- gr.HTML("""</ul>""")
-
-
- #demo.queue()
- demo.launch(debug=True)
界面及功能都正常,展示如下:
tips1:运行上述代码,如果报代理错误:
在终端使用如下代码再重新启动jupyter-noterbook,使用下面命令即可解决:
(base) jie@dell:~/桌面$ unset all_proxy; unset ALL_PROXY
tip2:如果拖动自己的图片在预测框显示错误,原因是点击预测太快了。需要等图片上传完后点预测才能成功,点太快会出现错误两字。不限制图片尺寸。
四、入门gradio案例:
- import gradio as gr
-
- def greet(name):
- return "Hello " + name + "!"
-
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
- demo.launch()
实现对姓名打招呼的功能,本地服务器的界面如下:
本人项目链接:https://huggingface.co/spaces/wuqi57/facebook-detr-resnet-50
在远程服务器上需要下载包和上传模型文件,官方提供了api:
https://huggingface.co/facebook/detr-resnet-50/tree/main?inference_api=true
以及打包好的space环境
https://huggingface.co/facebook/detr-resnet-50/tree/main?space_deploy=true
上面两种方式就可以直接使用,直接创建一个app.py文件就可以运行,避免了上传大量的模型文件和下载相应的库。(实例见本人上面的项目链接)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。