赞
踩
git clone https://github.com/ultralytics/yolov5.git
- import glob
- import os
- import random
- import shutil
- import time
- from pathlib import Path
- from threading import Thread
-
- import cv2
- import math
- import numpy as np
- import torch
- from PIL import Image, ExifTags
- from torch.utils.data import Dataset
- from tqdm import tqdm
-
- from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
-
- help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
- # 支持的图像格式
- img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
- # 支持的视频格式
- vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
-
- # Get orientation exif tag
- '''
- 可交换图像文件格式(Exchangeable image file format,简称Exif),
- 是专门为数码相机的照片设定的,可以记录数码照片的属性信息和拍摄数据。
- '''
- for orientation in ExifTags.TAGS.keys():
- if ExifTags.TAGS[orientation] == 'Orientation':
- break
-
- # 返回文件列表的hash值
- def get_hash(files):
- # Returns a single hash value of a list of files
- return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
-
- # 获取图片的宽、高信息
- # check Exif Orientation metadata and rotate the images if needed.
- def exif_size(img):
- # Returns exif-corrected PIL size
- s = img.size # (width, height)
- try:
- rotation = dict(img._getexif().items())[orientation] # 调整数码相机照片方向
- if rotation == 6: # rotation 270
- s = (s[1], s[0])
- elif rotation == 8: # rotation 90
- s = (s[1], s[0])
- except:
- pass
-
- return s
-
- # 利用自定义的数据集(LoadImagesAndLabels)创建dataloader
- def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
- rank=-1, world_size=1, workers=8):
- """
- 参数解析:
- path:包含图片路径的txt文件或者包含图片的文件夹路径
- imgsz:网络输入图片大小
- batch_size: 批次大小
- stride:网络下采样步幅
- opt:调用train.py时传入的参数,这里主要用到opt.single_cls,是否是单类数据集
- hyp:网络训练时的一些超参数,包括学习率等,这里主要用到里面一些关于数据增强(旋转、平移等)的系数
- augment:是否进行数据增强(Mosaic以外)
- cache:是否提前缓存图片到内存,以便加快训练速度
- pad:设置矩形训练的shape时进行的填充
- rect:是否进行ar排序矩形训练(为True不做Mosaic数据增强)
- """
- # Make sure only the first process in DDP(DistributedDataParallel) process the dataset first,
- # and the following others can use the cache.
- with torch_distributed_zero_first(rank):
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
- augment=augment, # augment images
- hyp=hyp, # augmentation hyperparameters
- rect=rect, # rectangular training
- cache_images=cache,
- single_cls=opt.single_cls,
- stride=int(stride),
- pad=pad,
- rank=rank)
-
- batch_size = min(batch_size, len(dataset))
- nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
- # 给每个rank对应的进程分配训练的样本索引
- sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
- # 实例化InfiniteDataLoader
- dataloader = InfiniteDataLoader(dataset,
- batch_size=batch_size,
- num_workers=nw,
- sampler=sampler,
- pin_memory=True,
- collate_fn=LoadImagesAndLabels.collate_fn) # torch.utils.data.DataLoader()
- return dataloader, dataset
-
- # Dataloader takes a chunk of time at the start of every epoch to start worker processes.
- # We only need to initialize it once at first epoch through this InfiniteDataLoader class
- # which subclasses the DataLoader class.
- # 定义DataLoader(一个python生成器)
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
- """ Dataloader that reuses workers.
- Uses same syntax as vanilla DataLoader.
- """
-
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
- self.iterator = super().__iter__()
-
- def __len__(self):
- return len(self.batch_sampler.sampler)
-
- def __iter__(self): # 实现了__iter__方法的对象是可迭代的
- for i in range(len(self)):
- yield next(self.iterator)
-
- # 定义生成器 _RepeatSampler
- class _RepeatSampler(object):
- """ Sampler that repeats forever.
- Args:
- sampler (Sampler)
- """
-
- def __init__(self, sampler):
- self.sampler = sampler
-
- def __iter__(self):
- while True:
- yield from iter(self.sampler)
-
- # 定义迭代器 LoadImages;用于detect.py
- class LoadImages: # for inference
- def __init__(self, path, img_size=640):
- p = str(Path(path)) # os-agnostic
- # os.path.abspath(p)返回p的绝对路径
- p = os.path.abspath(p) # absolute path;完整路径
- # 如果采用正则化表达式提取图片/视频,可使用glob获取文件路径
- if '*' in p:
- files = sorted(glob.glob(p, recursive=True)) # glob
- elif os.path.isdir(p): # 如果path是一个文件夹,使用glob获取全部文件路径
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
- elif os.path.isfile(p): # 如果是文件则直接获取
- files = [p] # files
- else:
- raise Exception('ERROR: %s does not exist' % p)
-
- # os.path.splitext分离文件名和后缀(后缀包含.)
- # 分别提取图片和视频文件路径
- images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
- videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
- # 获得图片与视频数量
- ni, nv = len(images), len(videos)
-
- self.img_size = img_size # 输入图片size
- self.files = images + videos # 整合图片和视频路径到一个列表
- self.nf = ni + nv # number of files;总的文件数量
- # 设置判断是否为视频的bool变量,方便后面单独对视频进行处理
- self.video_flag = [False] * ni + [True] * nv
- # 初始化模块信息,代码中对于mode=images与mode=video有不同处理
- self.mode = 'images'
- if any(videos): # 如果包含视频文件,则初始化opencv中的视频模块,cap=cv2.VideoCapture等
- self.new_video(videos[0]) # new video
- else:
- self.cap = None
- # nf如果小于0,则打印提示信息
- assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
- (p, img_formats, vid_formats)
-
- def __iter__(self):
- self.count = 0
- return self
-
- def __next__(self):
- if self.count == self.nf: # self.count == self.nf表示数据读取完了
- raise StopIteration
- path = self.files[self.count] # 获取文件路径
-
- if self.video_flag[self.count]: # 如果该文件为视频
- # Read video
- self.mode = 'video' # 修改mode为video
- ret_val, img0 = self.cap.read() # 获取当前帧画面,ret_val为一个bool变量,直到视频读取完毕之前都为True
- if not ret_val: # 如果当前视频读取结束,则读取下一个视频
- self.count += 1
- self.cap.release() # 释放视频对象
- if self.count == self.nf: # last video; self.count == self.nf表示视频已经读取完了
- raise StopIteration
- else:
- path = self.files[self.count]
- self.new_video(path)
- ret_val, img0 = self.cap.read()
-
- self.frame += 1 # 当前读取的帧数
- print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
-
- else:
- # Read image
- self.count += 1
- img0 = cv2.imread(path) # BGR格式
- assert img0 is not None, 'Image Not Found ' + path
- print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
-
- # Padded resize
- img = letterbox(img0, new_shape=self.img_size)[0] # 对图片进行resize+pad
-
- # Convert
- # opencv读入的图像BGR->RGB操作; BGR转为RGB格式,并且把channel轴换到前面
- # img[:,:,::-1]的作用就是实现RGB到BGR通道的转换;对于列表img进行img[:,:,::-1]的作用是列表数组左右翻转
- # torch.Tensor 高维矩阵的表示: (nSample)x C x H x W
- # numpy.ndarray 高维矩阵的表示: H x W x C
- # 把channel轴换到前面使用transpose() 方法 。
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x640x640
- img = np.ascontiguousarray(img) # 将数组内存转为连续,提高运行速度
-
- # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
- return path, img, img0, self.cap # 返回:路径,resize+pad的图片,原始图片,视频对象
-
- def new_video(self, path):
- self.frame = 0 # frame用来记录帧数
- self.cap = cv2.VideoCapture(path) # 初始化视频对象
- self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 视频文件中的总帧数
-
- def __len__(self):
- return self.nf # number of files
-
- # 定义迭代器 LoadWebcam; 未使用
- class LoadWebcam: # for inference
- def __init__(self, pipe=0, img_size=640):
- self.img_size = img_size
-
- if pipe == '0':
- pipe = 0 # local camera
- # pipe = 'rtsp://192.168.1.64/1' # IP camera
- # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
- # pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
- # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
-
- # https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
- # pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
-
- # https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
- # https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
- # pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
-
- self.pipe = pipe
- self.cap = cv2.VideoCapture(pipe) # video capture object
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
-
- def __iter__(self):
- self.count = -1
- return self
-
- def __next__(self):
- self.count += 1
- if cv2.waitKey(1) == ord('q'): # q to quit
- self.cap.release()
- cv2.destroyAllWindows()
- raise StopIteration
-
- # Read frame
- if self.pipe == 0: # local camera
- ret_val, img0 = self.cap.read() # cap.read() 结合grab和retrieve的功能,抓取下一帧并解码
- img0 = cv2.flip(img0, 1) # flip left-right
- else: # IP camera
- n = 0
- while True:
- n += 1
- self.cap.grab() # cap.grab()从设备或视频获取下一帧
- if n % 30 == 0: # skip frames
- ret_val, img0 = self.cap.retrieve() # cap.retrieve() 在grab后使用,对获取到的帧进行解码
- if ret_val:
- break
-
- # Print
- assert ret_val, 'Camera Error %s' % self.pipe
- img_path = 'webcam.jpg'
- print('webcam %g: ' % self.count, end='')
-
- # Padded resize
- img = letterbox(img0, new_shape=self.img_size)[0]
-
- # Convert
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x640x640
- img = np.ascontiguousarray(img)
-
- return img_path, img, img0, None
-
- def __len__(self):
- return 0
-
-
- # 定义迭代器 LoadStreams;用于detect.py
- """
- cv2视频读取函数:
- cap.grap() 从设备或视频获取下一帧,获取成功返回true否则false
- cap.retrieve(frame) 在grab后使用,对获取到的帧进行解码,也返回true或false
- cap.read(frame) 结合grab和retrieve的功能,抓取下一帧并解码
- """
- class LoadStreams: # multiple IP or RTSP cameras
- def __init__(self, sources='streams.txt', img_size=640):
- self.mode = 'images' # 初始化mode为images
- self.img_size = img_size
- # 如果sources为一个保存了多个视频流的文件
- # 获取每一个视频流,保存为一个列表
- if os.path.isfile(sources):
- with open(sources, 'r') as f:
- sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
- else:
- sources = [sources]
-
- n = len(sources)
- self.imgs = [None] * n
- self.sources = sources # 视频流个数
- for i, s in enumerate(sources):
- # Start the thread to read frames from the video stream
- print('%g/%g: %s... ' % (i + 1, n, s), end='') # 打印当前视频,总视频数,视频流地址
- cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s) # 如果source=0则打开摄像头,否则打开视频流地址
- assert cap.isOpened(), 'Failed to open %s' % s
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 获取视频的宽度信息
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 获取视频的高度信息
- fps = cap.get(cv2.CAP_PROP_FPS) % 100 # 获取视频的帧率
- _, self.imgs[i] = cap.read() # guarantee first frame;读取当前画面
- # 创建多线程读取视频流,daemon=True表示主线程结束时子线程也结束
- thread = Thread(target=self.update, args=([i, cap]), daemon=True)
- print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
- thread.start()
- print('') # newline
-
- # check for common shapes
- # 获取进行resize+pad之后的shape,letterbox函数默认(参数auto=True)是按照矩形推理形状进行填充
- s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
- if not self.rect:
- print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
-
- def update(self, index, cap):
- # Read next stream frame in a daemon thread
- n = 0
- while cap.isOpened():
- n += 1
- # _, self.imgs[index] = cap.read()
- cap.grab()
- if n == 4: # read every 4th frame; 每4帧读取一次
- _, self.imgs[index] = cap.retrieve()
- n = 0
- time.sleep(0.01) # wait time
-
- def __iter__(self):
- self.count = -1
- return self
-
- def __next__(self):
- self.count += 1
- img0 = self.imgs.copy()
- if cv2.waitKey(1) == ord('q'): # q to quit
- cv2.destroyAllWindows()
- raise StopIteration
-
- # Letterbox
- # 对图片进行resize+pad
- img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
-
- # Stack
- img = np.stack(img, 0) # 将读取的图片拼接到一起
-
- # Convert
- img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x640x640
- img = np.ascontiguousarray(img)
-
- return self.sources, img, img0, None
-
- def __len__(self):
- return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
-
- # 自定义的数据集
- # 定义LoadImagesAndLabels类, 继承Dataset, 重写抽象方法:__len()__, __getitem()__
- class LoadImagesAndLabels(Dataset): # for training/testing
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
- cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
- self.img_size = img_size # 输入图片分辨率大小
- self.augment = augment # 数据增强
- self.hyp = hyp # 超参数
- self.image_weights = image_weights # 图片采样权重
- self.rect = False if image_weights else rect # 矩形训练
- # mosaic数据增强
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
- # mosaic增强的边界值
- self.mosaic_border = [-img_size // 2, -img_size // 2]
- self.stride = stride # 模型下采样的步长
-
- def img2label_paths(img_paths):
- # Define label paths as a function of image paths
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
- return [x.replace(sa, sb, 1).replace(os.path.splitext(x)[-1], '.txt') for x in img_paths]
-
- try:
- f = [] # image files
- for p in path if isinstance(path, list) else [path]:
- # 获取数据集路径path,包含图片路径的txt文件或者包含图片的文件夹路径
- # 使用pathlib.Path生成与操作系统无关的路径,因为不同操作系统路径的‘/’会有所不同
- p = str(Path(p)) # os-agnostic
- parent = str(Path(p).parent) + os.sep # 获取数据集路径的上级父目录,os.sep为路径里的分隔符(不同系统路径分隔符不同,os.sep根据系统自适应)
- # 系统路径中的分隔符:Windows系统通过是“\\”,Linux类系统如Ubuntu的分隔符是“/”,而苹果Mac OS系统中是“:”。
- if os.path.isfile(p): # file; 如果路径path为包含图片路径的txt文件
- with open(p, 'r') as t:
- t = t.read().splitlines() # 获取图片路径,更换相对路径
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
- elif os.path.isdir(p): # folder; 如果路径path为包含图片的文件夹路径
- f += glob.iglob(p + os.sep + '*.*')
- # glob.iglob() 函数获取一个可遍历对象,使用它可以逐个获取匹配的文件路径名。
- # 与glob.glob()的区别是:glob.glob()可同时获取所有的匹配路径,而glob.iglob()一次只能获取一个匹配路径。
- else:
- raise Exception('%s does not exist' % p)
- # 分隔符替换为os.sep,os.path.splitext(x)将文件名与扩展名分开并返回一个列表
- self.img_files = sorted(
- [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
- assert len(self.img_files) > 0, 'No images found'
- except Exception as e:
- raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
-
- # Check cache
- self.label_files = img2label_paths(self.img_files) # labels
- cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
- if os.path.isfile(cache_path):
- cache = torch.load(cache_path) # load
- if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
- cache = self.cache_labels(cache_path) # re-cache
- else:
- cache = self.cache_labels(cache_path) # cache
-
- # Read cache
- cache.pop('hash') # remove hash
- labels, shapes = zip(*cache.values())
- self.labels = list(labels)
- self.shapes = np.array(shapes, dtype=np.float64)
- self.img_files = list(cache.keys()) # update
- self.label_files = img2label_paths(cache.keys()) # update
-
- n = len(shapes) # number of images 数据集的图片文件数量
- bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index 获取batch的索引
- nb = bi[-1] + 1 # number of batches: 一个epoch(轮次)batch的数量
- self.batch = bi # batch index of image
- self.n = n
-
- # ar排序矩形训练
- # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
- if self.rect:
- # Sort by aspect ratio
- s = self.shapes # wh
- ar = s[:, 1] / s[:, 0] # aspect ratio
- irect = ar.argsort() # 获取根据ar从小到大排序的索引
- # 根据索引排序数据集与标签路径、shape、h/w
- self.img_files = [self.img_files[i] for i in irect]
- self.label_files = [self.label_files[i] for i in irect]
- self.labels = [self.labels[i] for i in irect]
- self.shapes = s[irect] # wh
- ar = ar[irect]
-
- # Set training image shapes
- shapes = [[1, 1]] * nb # 初始化shapes,nb为一轮批次batch的数量
- for i in range(nb):
- ari = ar[bi == i]
- mini, maxi = ari.min(), ari.max()
- if maxi < 1: # 如果一个batch中最大的h/w小于1,则此batch的shape为(img_size*maxi, img_size)
- shapes[i] = [maxi, 1]
- elif mini > 1: # 如果一个batch中最小的h/w大于1,则此batch的shape为(img_size, img_size/mini)
- shapes[i] = [1, 1 / mini]
-
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
-
- # Check labels
- create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
- nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
- pbar = enumerate(self.label_files)
- if rank in [-1, 0]:
- pbar = tqdm(pbar)
- for i, file in pbar:
- l = self.labels[i] # label
- if l is not None and l.shape[0]:
- assert l.shape[1] == 5, '> 5 label columns: %s' % file
- assert (l >= 0).all(), 'negative labels: %s' % file
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
- if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
- nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
- if single_cls:
- l[:, 0] = 0 # force dataset into single-class mode
- self.labels[i] = l
- nf += 1 # file found
-
- # Create subdataset (a smaller dataset)
- if create_datasubset and ns < 1E4:
- if ns == 0:
- create_folder(path='./datasubset')
- os.makedirs('./datasubset/images')
- exclude_classes = 43
- if exclude_classes not in l[:, 0]:
- ns += 1
- # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
- with open('./datasubset/images.txt', 'a') as f:
- f.write(self.img_files[i] + '\n')
-
- # Extract object detection boxes for a second stage classifier
- if extract_bounding_boxes:
- p = Path(self.img_files[i])
- img = cv2.imread(str(p))
- h, w = img.shape[:2]
- for j, x in enumerate(l):
- f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
- if not os.path.exists(Path(f).parent):
- os.makedirs(Path(f).parent) # make new output folder
-
- b = x[1:] * [w, h, w, h] # box
- b[2:] = b[2:].max() # rectangle to square
- b[2:] = b[2:] * 1.3 + 30 # pad
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
-
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
- assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
- else:
- ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
- # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
-
- if rank in [-1, 0]:
- pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
- cache_path, nf, nm, ne, nd, n)
- if nf == 0: # No labels found
- s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
- print(s)
- assert not augment, '%s. Can not train without labels.' % s
-
- # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
- # 初始化图片与标签,为缓存图片、标签做准备
- self.imgs = [None] * n
- if cache_images:
- gb = 0 # Gigabytes of cached images
- pbar = tqdm(range(len(self.img_files)), desc='Caching images')
- self.img_hw0, self.img_hw = [None] * n, [None] * n
- for i in pbar: # max 10k images
- self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
- gb += self.imgs[i].nbytes
- pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
- # 缓存标签
- def cache_labels(self, path='labels.cache'):
- # Cache dataset labels, check images and read shapes
- x = {} # dict
- pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
- for (img, label) in pbar:
- try:
- l = []
- im = Image.open(img)
- im.verify() # PIL verify
- shape = exif_size(im) # image size
- assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
- if os.path.isfile(label):
- with open(label, 'r') as f:
- l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
- if len(l) == 0:
- l = np.zeros((0, 5), dtype=np.float32)
- x[img] = [l, shape]
- except Exception as e:
- print('WARNING: Ignoring corrupted image and/or label %s: %s' % (img, e))
-
- x['hash'] = get_hash(self.label_files + self.img_files)
- torch.save(x, path) # save for next time
- return x
-
- def __len__(self):
- return len(self.img_files)
-
- # def __iter__(self):
- # self.count = -1
- # print('ran dataset iter')
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
- # return self
-
- def __getitem__(self, index):
- if self.image_weights: # 如果存在image_weights,则获取新的下标
- index = self.indices[index]
- """
- self.indices在train.py中设置, 要配合着train.py中的代码使用
- image_weights为根据标签中每个类别的数量设置的图片采样权重
- 如果image_weights=True,则根据图片采样权重获取新的下标
- """
-
- hyp = self.hyp # 超参数
- mosaic = self.mosaic and random.random() < hyp['mosaic']
- # image mosaic (probability),默认为1
- if mosaic:
- # Load mosaic
- img, labels = load_mosaic(self, index) # 使用mosaic数据增强方式加载图片和标签
- shapes = None
-
- # MixUp https://arxiv.org/pdf/1710.09412.pdf
- # Mixup数据增强
- if random.random() < hyp['mixup']:
- img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
- r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
- img = (img * r + img2 * (1 - r)).astype(np.uint8) # mixup
- labels = np.concatenate((labels, labels2), 0)
-
- else:
- # Load image 加载图片并根据设定的输入大小与图片原大小的比例ratio进行resize
- img, (h0, w0), (h, w) = load_image(self, index)
-
- # Letterbox
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
-
- # Load labels
- labels = []
- x = self.labels[index]
- if x.size > 0:
- # Normalized xywh to pixel xyxy format
- # 根据pad调整框的标签坐标,并从归一化的xywh->未归一化的xyxy
- labels = x.copy()
- labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
- labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
- labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
- labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
-
- if self.augment:
- # Augment imagespace
- if not mosaic: # 需要做数据增强但没使用mosaic: 则随机对图片进行旋转,平移,缩放,裁剪
- img, labels = random_perspective(img, labels,
- degrees=hyp['degrees'],
- translate=hyp['translate'],
- scale=hyp['scale'],
- shear=hyp['shear'],
- perspective=hyp['perspective'])
-
- # Augment colorspace # 随机改变图片的色调(H),饱和度(S),亮度(V)
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
-
- # Apply cutouts
- # if random.random() < 0.9:
- # labels = cutout(img, labels)
-
- nL = len(labels) # number of labels
- if nL: # 调整框的标签,xyxy->xywh(归一化)
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
- # 重新归一化标签0 - 1
- labels[:, [2, 4]] /= img.shape[0] # normalized height 0~1
- labels[:, [1, 3]] /= img.shape[1] # normalized width 0~1
-
- if self.augment:
- # flip up-down # 图片随机上下翻转
- if random.random() < hyp['flipud']:
- img = np.flipud(img)
- if nL:
- labels[:, 2] = 1 - labels[:, 2]
-
- # flip left-right # 图片随机左右翻转
- if random.random() < hyp['fliplr']:
- img = np.fliplr(img)
- if nL:
- labels[:, 1] = 1 - labels[:, 1]
-
- # 初始化标签框对应的图片序号,配合下面的collate_fn使用
- labels_out = torch.zeros((nL, 6))
- if nL:
- labels_out[:, 1:] = torch.from_numpy(labels)
-
- # Convert
- # img[:,:,::-1]的作用就是实现BGR到RGB通道的转换; 对于列表img进行img[:,:,::-1]的作用是列表数组左右翻转
- # channel轴换到前面
- # torch.Tensor 高维矩阵的表示: (nSample)x C x H x W
- # numpy.ndarray 高维矩阵的表示: H x W x C
- img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x640x640
- img = np.ascontiguousarray(img)
-
- return torch.from_numpy(img), labels_out, self.img_files[index], shapes
-
- # pytorch的DataLoader打包一个batch的数据集时要经过函数collate_fn进行打包
- # 例如:通过重写此函数实现标签与图片对应的划分,一个batch中哪些标签属于哪一张图片
-
- @staticmethod
- def collate_fn(batch): # 整理函数:如何取样本的,可以定义自己的函数来实现想要的功能
- img, label, path, shapes = zip(*batch) # transposed
- for i, l in enumerate(label):
- l[:, 0] = i # add target image index for build_targets()
- return torch.stack(img, 0), torch.cat(label, 0), path, shapes
-
-
- # Ancillary functions --------------------------------------------------------------------------------------------------
- # load_image加载图片并根据设定的输入大小与图片原大小的比例ratio进行resize
- def load_image(self, index):
- # loads 1 image from dataset, returns img, original hw, resized hw
- img = self.imgs[index]
- if img is None: # not cached
- path = self.img_files[index]
- img = cv2.imread(path) # BGR
- assert img is not None, 'Image Not Found ' + path
- h0, w0 = img.shape[:2] # orig hw
- r = self.img_size / max(h0, w0) # resize image to img_size
- # 根据ratio选择不同的插值方式
- if r != 1: # always resize down, only resize up if training with augmentation
- interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
- return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
- else:
- return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
-
- # HSV色彩空间做数据增强
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
- # 随机取-1到1三个实数,乘以hyp中的hsv三通道的系数;HSV(Hue, Saturation, Value)
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
- # 分离通道
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- dtype = img.dtype # uint8
-
- # 随机调整hsv
- x = np.arange(0, 256, dtype=np.int16)
- lut_hue = ((x * r[0]) % 180).astype(dtype) # 色调H
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) # 饱和度S
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype) # 明度V
-
- # 随机调整hsv之后重新组合通道
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
- # 将hsv格式转为BGR格式
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
-
- # Histogram equalization
- # if random.random() < 0.2:
- # for i in range(3):
- # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
-
- # 生成一个mosaic增强的图片
- def load_mosaic(self, index):
- # loads images in a mosaic
-
- labels4 = []
- s = self.img_size
- # 随机取mosaic中心点
- yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
- # 随机取其它三张图片的索引
- indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
- for i, index in enumerate(indices):
- # Load image
- # load_image加载图片并根据设定的输入大小与图片原大小的比例ratio进行resize
- img, _, (h, w) = load_image(self, index)
-
- # place img in img4
- if i == 0: # top left
- # 初始化大图
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
- # 设置大图上的位置(左上角)
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
- # 选取小图上的位置
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
- elif i == 1: # top right 右上角
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
- elif i == 2: # bottom left 左下角
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
- elif i == 3: # bottom right 右下角
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
-
- # 将小图上截取的部分贴到大图上
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
- # 计算小图到大图上时所产生的偏移,用来计算mosaic增强后的标签框的位置
- padw = x1a - x1b
- padh = y1a - y1b
-
- # Labels
- x = self.labels[index]
- labels = x.copy()
- # 重新调整标签框的位置
- if x.size > 0: # Normalized xywh to pixel xyxy format
- labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
- labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
- labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
- labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
- labels4.append(labels)
-
- # Concat/clip labels
- if len(labels4):
- # 调整标签框在图片内部
- labels4 = np.concatenate(labels4, 0)
- np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
- # img4, labels4 = replicate(img4, labels4) # replicate
-
- # 进行mosaic的时候将四张图片整合到一起之后shape为[2*img_size, 2*img_size]
- # 对mosaic整合的图片进行随机旋转、平移、缩放、裁剪,并resize为输入大小img_size
- # Augment
- img4, labels4 = random_perspective(img4, labels4,
- degrees=self.hyp['degrees'],
- translate=self.hyp['translate'],
- scale=self.hyp['scale'],
- shear=self.hyp['shear'],
- perspective=self.hyp['perspective'],
- border=self.mosaic_border) # border to remove
-
- return img4, labels4
-
-
- def replicate(img, labels):
- # Replicate labels
- h, w = img.shape[:2]
- boxes = labels[:, 1:].astype(int)
- x1, y1, x2, y2 = boxes.T
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
- x1b, y1b, x2b, y2b = boxes[i]
- bh, bw = y2b - y1b, x2b - x1b
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
- img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
-
- return img, labels
-
- # 图像缩放: 保持图片的宽高比例,剩下的部分采用灰色填充。
- def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
- # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
- shape = img.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # Scale ratio (new / old) # 计算缩放因子
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- """
- 缩放(resize)到输入大小img_size的时候,如果没有设置上采样的话,则只进行下采样
- 因为上采样图片会让图片模糊,对训练不友好影响性能。
- """
- if not scaleup: # only scale down, do not scale up (for better test mAP)
- r = min(r, 1.0)
-
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- if auto: # minimum rectangle # 获取最小的矩形填充
- dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
- # 如果scaleFill=True,则不进行填充,直接resize成img_size, 任由图片进行拉伸和压缩
- elif scaleFill: # stretch
- dw, dh = 0.0, 0.0
- new_unpad = (new_shape[1], new_shape[0])
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
- # 计算上下左右填充大小
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- # 进行填充
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return img, ratio, (dw, dh)
-
- # 随机透视变换
- # 计算方法为坐标向量和变换矩阵的乘积
- def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
- # targets = [cls, xyxy]
-
- height = img.shape[0] + border[0] * 2 # shape(h,w,c)
- width = img.shape[1] + border[1] * 2
-
- # Center
- C = np.eye(3)
- C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
- C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
-
- # Perspective:透视变换
- P = np.eye(3)
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
-
- # Rotation and Scale # 设置旋转和缩放的仿射矩阵
- R = np.eye(3)
- a = random.uniform(-degrees, degrees)
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
- s = random.uniform(1 - scale, 1 + scale)
- # s = 2 ** random.uniform(-scale, scale)
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
-
- # Shear;设置裁剪的仿射矩阵系数
- S = np.eye(3)
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
-
- # Translation;设置平移的仿射矩阵系数
- T = np.eye(3)
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
-
- # Combined rotation matrix
- # 融合仿射矩阵并作用在图片上; @表示矩阵乘法运算
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
- if perspective:
- # 透视变换函数,可保持直线不变形,但是平行线可能不再平行
- img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
- else: # affine
- # 仿射变换函数,可实现旋转,平移,缩放;变换后的平行线依旧平行
- img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
-
- # Visualize
- # import matplotlib.pyplot as plt
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
- # ax[0].imshow(img[:, :, ::-1]) # base
- # ax[1].imshow(img2[:, :, ::-1]) # warped
-
- # Transform label coordinates
- # 调整框的标签
- n = len(targets)
- if n:
- # warp points
- xy = np.ones((n * 4, 3))
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
- xy = xy @ M.T # transform
- if perspective:
- xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
- else: # affine
- xy = xy[:, :2].reshape(n, 8)
-
- # create new boxes
- x = xy[:, [0, 2, 4, 6]]
- y = xy[:, [1, 3, 5, 7]]
- xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
-
- # # apply angle-based reduction of bounding boxes
- # radians = a * math.pi / 180
- # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
- # x = (xy[:, 2] + xy[:, 0]) / 2
- # y = (xy[:, 3] + xy[:, 1]) / 2
- # w = (xy[:, 2] - xy[:, 0]) * reduction
- # h = (xy[:, 3] - xy[:, 1]) * reduction
- # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
-
- # clip boxes
- # 去除进行上面一系列操作后被裁剪过小的框;reject warped points outside of image
- xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
- xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
-
- # filter candidates
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
- targets = targets[i]
- targets[:, 1:5] = xy[i]
-
- return img, targets
-
-
- def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
- ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
-
- # cutout数据增强
- def cutout(image, labels):
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
- h, w = image.shape[:2]
-
- def bbox_ioa(box1, box2):
- # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
- box2 = box2.transpose()
-
- # Get the coordinates of bounding boxes
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
-
- # Intersection area
- inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
- (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
-
- # box2 area
- box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
-
- # Intersection over box2 area
- return inter_area / box2_area
-
- # create random masks
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
- for s in scales:
- mask_h = random.randint(1, int(h * s))
- mask_w = random.randint(1, int(w * s))
-
- # box
- xmin = max(0, random.randint(0, w) - mask_w // 2)
- ymin = max(0, random.randint(0, h) - mask_h // 2)
- xmax = min(w, xmin + mask_w)
- ymax = min(h, ymin + mask_h)
-
- # apply random color mask
- image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
-
- # return unobscured labels
- if len(labels) and s > 0.03:
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
- labels = labels[ioa < 0.60] # remove >60% obscured labels
-
- return labels
-
-
- def reduce_img_size(path='path/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
- # creates a new ./images_reduced folder with reduced size images of maximum size img_size
- path_new = path + '_reduced' # reduced images path
- create_folder(path_new)
- for f in tqdm(glob.glob('%s/*.*' % path)):
- try:
- img = cv2.imread(f)
- h, w = img.shape[:2]
- r = img_size / max(h, w) # size ratio
- if r < 1.0:
- img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
- fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
- cv2.imwrite(fnew, img)
- except:
- print('WARNING: image failure %s' % f)
-
-
- def recursive_dataset2bmp(dataset='path/dataset_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
- # Converts dataset to bmp (for faster training)
- formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
- for a, b, files in os.walk(dataset):
- for file in tqdm(files, desc=a):
- p = a + '/' + file
- s = Path(file).suffix
- if s == '.txt': # replace text
- with open(p, 'r') as f:
- lines = f.read()
- for f in formats:
- lines = lines.replace(f, '.bmp')
- with open(p, 'w') as f:
- f.write(lines)
- elif s in formats: # replace image
- cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
- if s != '.bmp':
- os.system("rm '%s'" % p)
-
-
- def imagelist2folder(path='path/images.txt'): # from utils.datasets import *; imagelist2folder()
- # Copies all the images in a text file (list of images) into a folder
- create_folder(path[:-4])
- with open(path, 'r') as f:
- for line in f.read().splitlines():
- os.system('cp "%s" %s' % (line, path[:-4]))
- print(line)
-
-
- def create_folder(path='./new'):
- # Create folder
- if os.path.exists(path):
- shutil.rmtree(path) # delete output folder
- os.makedirs(path) # make new output folder
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。