赞
踩
https://ai.meta.com/blog/meta-llama-3-1/https://ai.meta.com/blog/meta-llama-3-1/我测试了它写代码能力,让它用python写个贪吃蛇游戏,写代码速度很慢,但是一次成功,下面是它写的代码和,代码运行的效果。
- import pygame
- import sys
- import random
-
- # Initialize Pygame
- pygame.init()
-
- # Set up some constants
- WIDTH, HEIGHT = 800, 600
- BLOCK_SIZE = 20
- SPEED = 10
-
- # Set up some colors
- BLACK = (0, 0, 0)
- WHITE = (255, 255, 255)
- RED = (255, 0, 0)
- GREEN = (0, 255, 0)
-
- # Set up the display
- screen = pygame.display.set_mode((WIDTH, HEIGHT))
- pygame.display.set_caption("Snake")
-
- # Set up the font
- font = pygame.font.Font(None, 36)
-
- # Set up the snake and food
- snake = [(200, 200), (220, 200), (240, 200)]
- food = (400, 300)
-
- # Set up the direction
- direction = "RIGHT"
-
- # Game loop
- while True:
- # Event handling
- for event in pygame.event.get():
- if event.type == pygame.QUIT:
- pygame.quit()
- sys.exit()
- elif event.type == pygame.KEYDOWN:
- if event.key == pygame.K_UP and direction!= "DOWN":
- direction = "UP"
- elif event.key == pygame.K_DOWN and direction!= "UP":
- direction = "DOWN"
- elif event.key == pygame.K_LEFT and direction!= "RIGHT":
- direction = "LEFT"
- elif event.key == pygame.K_RIGHT and direction!= "LEFT":
- direction = "RIGHT"
-
- # Move the snake
- head = snake[-1]
- if direction == "UP":
- new_head = (head[0], head[1] - BLOCK_SIZE)
- elif direction == "DOWN":
- new_head = (head[0], head[1] + BLOCK_SIZE)
- elif direction == "LEFT":
- new_head = (head[0] - BLOCK_SIZE, head[1])
- elif direction == "RIGHT":
- new_head = (head[0] + BLOCK_SIZE, head[1])
- snake.append(new_head)
-
- # Check for collision with food
- if snake[-1] == food:
- food = (random.randint(0, WIDTH - BLOCK_SIZE) // BLOCK_SIZE * BLOCK_SIZE,
- random.randint(0, HEIGHT - BLOCK_SIZE) // BLOCK_SIZE * BLOCK_SIZE)
- else:
- snake.pop(0)
-
- # Check for collision with self or wall
- if (snake[-1] in snake[:-1] or
- snake[-1][0] < 0 or snake[-1][0] >= WIDTH or
- snake[-1][1] < 0 or snake[-1][1] >= HEIGHT):
- pygame.quit()
- sys.exit()
-
- # Draw everything
- screen.fill(BLACK)
- for pos in snake:
- pygame.draw.rect(screen, GREEN, (pos[0], pos[1], BLOCK_SIZE, BLOCK_SIZE))
- pygame.draw.rect(screen, RED, (food[0], food[1], BLOCK_SIZE, BLOCK_SIZE))
- text = font.render(f"Score: {len(snake)}", True, WHITE)
- screen.blit(text, (10, 10))
- pygame.display.flip()
-
- # Cap the frame rate
- pygame.time.delay(1000 // SPEED)
Context Window扩展:Llama 3.1将模型的Context Window从原来的8K tokens扩展到了128K tokens,极大地提升了处理长文和长对话的能力。
模型架构:Llama 3.1沿用了Llama 3的基础架构,即使是405B参数的模型也采用标准的decoder-only transformer架构,而非混合专家模型。同时继续使用GQA(分组查询注意力)技术,提高了长文处理能力。
性能表现:
许可证更新:Meta更新了Llama 3.1的许可条款,允许使用模型输出来改进其他语言模型,但要求训练出的新模型名称必须以"Llama"开头,并标注"Built with Llama"。
指令微调:Llama 3.1的Instruct版本根据工具调用进行了微调,并引入了新的iPython角色来接收和记录工具调用返回的数据。
HuggingChat:
Groq:
Llama 3.1的发布无疑是开源语言模型发展的一个重要里程碑。405B参数模型与顶级商业闭源模型的竞争力,以及8B参数模型超越Google Gemma 2 9B的表现,都展示了开源社区的巨大潜力。Meta允许将Llama 3.1用于知识蒸馏,这一决定将进一步推动开源AI社区的蓬勃发展。
让我们一起期待AI技术的持续进步,为更开放、更强大的语言模型贡献力量。
如果您喜欢这篇文章,欢迎点赞订阅我的频道。下期再见,各位兄弟朋友们请多保重!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。