当前位置:   article > 正文

xgboost python分类_XGBoost多分类预测

xgboost多特征多分类预测python代码

import pandas as pd

from sklearn.model_selection import train_test_split

from xgboost.sklearn import XGBClassifier

from sklearn.metrics import classification_report

from sklearn.metrics import f1_score, precision_score, recall_score

from sklearn.externals import joblib # 将模型导出所需包

def get_cust_age_stage(birth_year):

"""根据出生年份获取年龄段"""

age_stage = []

for i in range(len(birth_year)):

if int(birth_year[i]) == 0:

age_stage.append("未知")

elif int(birth_year[i]) < 1960:

age_stage.append("60前")

elif int(birth_year[i]) < 1970:

age_stage.append("60后")

elif int(birth_year[i]) < 1980:

age_stage.append("70后")

elif int(birth_year[i]) < 1990:

age_stage.append("80后")

elif int(birth_year[i]) < 2000:

age_stage.append("90后")

elif int(birth_year[i]) >= 2000:

age_stage.append("00后")

else:

age_stage.append("未知")

return age_stage

def get_top5_onehot(data):

"""对c字段排名top5的进行one hot"""

# 获取top5的值

c_top5_counts = data['c'].value_counts()[:5]

c_top5_names = list(c_top5_counts.keys())

# 进行one-hot编码,只保留top5的列

c_one_hot = pd.get_dummies(data['c'])

c_top5 = c_one_hot[c_top5_names]

# 将top5的列合并到data中

data = data.join(c_top5)

return data

def get_quantile_20_values(input_data):

"""按照分位数切分为20等分"""

grade = pd.DataFrame(columns=['quantile', 'value'])

for i in range(0, 21):

grade.loc[i, 'quantile'] = i / 20.0

grade.loc[i, 'value'] = input_data.quantile(i / 20.0)

cut_point = grade['value'].tolist() # 20等分的分位数的值

# 对20等分的分位数的值 进行去重

s_unique = []

for i in range(len(cut_point)):

if cut_point[i] not in s_unique:

s_unique.append(cut_point[i])

return s_unique

def get_quantile_interregional(s_unique):

"""根据去重后的分位数,构造区间"""

interregional = []

for i in range(1, len(s_unique)):

interregional.append([i, s_unique[i - 1], s_unique[i]])

if i == len(s_unique) - 1 and len(interregional) < 20:

interregional.append([i + 1, s_unique[i], s_unique[i]])

return interregional

def get_current_level(item_data,interregional):

"""根据分位数区间获取当前数所对应的的级别"""

level = 0

for i in range(len(interregional)):

if item_data >= interregional[i][1] and item_data

level = interregional[i][0]

break

elif interregional[i][1] == interregional[i][2]:

level = interregional[i][0]

break

return level

def get_division_level(input_data):

"""根据分位数划分对应级别"""

# 获取去重后20等分的分位数的值

s_unique = get_quantile_20_values(input_data)

# 构造分位数区间,输出格式[index,下限,上限] 区间为左闭右开

interregional = get_quantile_interregional(s_unique)

# 根据分位数区间对数据划分不同等级

quantile_20_level = []

for item in input_data:

quantile_20_level.append(get_current_level(item, interregional))

return quantile_20_level

def pre_processing(data):

"""对数据进行预处理"""

# 1. 增加衍生变量

# 年龄

data['年龄'] = get_cust_age_stage(data['出生年份'])

# 本月平均时长

data['本月平均时长'] = data['本月时长'].div(data['本月次数'],axis=0)

data['g'] = data['a'] - data['b']

# 2. 填充数据

col_name_0 = ['a', 'b','g', 'k'] # 需要填充为数字0的指标名

values = {}

for i in col_name_0:

values[i] = 0

# 不加inplace=True,数据不会被填充

data.fillna(value=values, inplace=True)

data.fillna({'m':'未知', 'z':'未知'}, inplace=True) # m/z列需要填充为字符串

# 对c指标进行one-hot处理

data = get_top5_onehot(data)

# 3. 分级化

col_name_level = ['d', 'e', 'f']

for i in range(len(col_name_level)):

new_col_name = col_name_level[i] + "_TILE20"

data[new_col_name] = get_division_level(data[col_name_level[i]])

return data

def get_model_columns(input_data):

"""获取建模指标列名,列表类型"""

total_col_names = input_data.columns

del_col_names = ['a','b','c']

model_col_names = [i for i in total_col_names if i not in del_col_names]

return model_col_names

def importance_features_top(model_str, model, x_train):

"""打印模型的重要指标,排名top10指标"""

print("打印XGBoost重要指标")

feature_importances_ = model.feature_importances_

feature_names = x_train.columns

importance_col = pd.DataFrame([*zip(feature_names, feature_importances_)],

columns=['a', 'b'])

importance_col_desc = importance_col.sort_values(by='b', ascending=False)

print(importance_col_desc.iloc[:10, :])

def print_precison_recall_f1(y_true, y_pre):

"""打印精准率、召回率和F1值"""

print("打印精准率、召回率和F1值")

print(classification_report(y_true, y_pre))

f1 = round(f1_score(y_true, y_pre, average='macro'), 2)

p = round(precision_score(y_true, y_pre, average='macro'), 2)

r = round(recall_score(y_true, y_pre, average='macro'), 2)

print("Precision: {}, Recall: {}, F1: {} ".format(p, r, f1))

def xgboost_model(x_train,y_train):

"""用XGBoost进行建模,返回训练好的模型"""

xgboost_clf = XGBClassifier(min_child_weight=6,max_depth=15,

objective='multi:softmax',num_class=5)

print("-" * 60)

print("xgboost模型:", xgboost_clf)

xgboost_clf.fit(x_train, y_train)

# # 打印重要性指数

importance_features_top('xgboost', xgboost_clf, x_train)

# 保存模型

joblib.dump(xgboost_clf, './model/XGBoost_model_v1.0')

return xgboost_clf

filename = "./文件对应路径.xlsx"

data = pd.read_excel(filename)

# 数据预处理,包括填充数据,增加衍生变量、分级化、top打横

data_processed = pre_processing(data)

# 根据业务删除某些变量,获取建模所需指标

model_col_names = get_model_columns(input_data)

model_data = data_processed[model_col_names]

# 将数据拆分为输入数据和输出数据

data_y = model_data['label']

data_x = model_data.drop(['label'], axis=1)

# 数据集拆分为训练集和测试集两部分 使用随机数种子,确保可以复现

x_train, x_test, y_train, y_test = train_test_split(data_x,data_y,

test_size=0.3,random_state=1)

# 建模

xgboost_clf = xgboost_model(x_train, y_train)

# 预测

pre_y_test = xgboost_clf.predict(x_test)

# 打印测试集的结果信息,包含precision、recall、f1-socre

print("-" * 30, "测试集", "-" * 30)

print_precison_recall_f1(y_test, pre_y_test)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/97351
推荐阅读
相关标签
  

闽ICP备14008679号