赞
踩
更新神经网络参数:
最简单的更新规则就是随机梯度下降。
weight = weight - learning_rate * gradient
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_feature(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_feature(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features net = Net() input = torch.randn(1, 1, 32, 32) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1) # # 举个栗子 criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) optimizer.zero_grad() output = net(input) loss = criterion(output,target) loss.backward() optimizer.step()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。