当前位置:   article > 正文

《动手学深度学习 Pytorch版》 9.1 门控循环单元(GRU)_pytorch 门控

pytorch 门控

我们可能会遇到这样的情况:

  • 早期观测值对预测所有未来观测值具有非常重要的意义。

    考虑一个极端情况,其中第一个观测值包含一个校验和,目标是在序列的末尾辨别校验和是否正确。在这种情况下,第一个词元的影响至关重要。我们希望有某些机制能够在一个记忆元里存储重要的早期信息。如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。

  • 一些词元没有相关的观测值。

    例如,在对网页内容进行情感分析时, 可能有一些辅助HTML代码与网页传达的情绪无关。 我们希望有一些机制来跳过隐状态表示中的此类词元。

  • 序列的各个部分之间存在逻辑中断。

    例如,书的章节之间可能会有过渡存在, 或者证券的熊市和牛市之间可能会有过渡存在。 在这种情况下,最好有一种方法来重置我们的内部状态表示。

在学术界已经提出了许多方法来解决这类问题。其中最早的方法是“长短期记忆”(long-short-term memory,LSTM),将在 9.2节中讨论。门控循环单元(gated recurrent unit,GRU)是一个稍微简化的变体,通常能够提供同等的效果,并且计算的速度明显更快。由于门控循环单元更简单,我们从它开始解读。

9.1.1 门控隐状态

9.1.1.1 重置门和更新门

  • 重置门(reset gate):控制“可能还想记住”的过去状态的数量,也就是控制旧状态的影响。

  • 更新门(update gate):控制新状态中有多少个是旧状态的副本,也就是控制新状态的影响。

要点:

  • 两个门是 ( 0 , 1 ) (0,1) (0,1) 区间中的向量,这样就可以进行凸组合。

  • 输入由当前时间步的输入和前一时间步的隐状态给出

  • 输出由使用sigmoid激活函数的两个全连接层给出

在这里插入图片描述

门控循环单元的数学表达如下:

R t = σ ( X t W x r + H t − 1 W h r + b r ) Z t = σ ( X t W x z + H t − 1 W h z + b z ) RtZt=σ(XtWxr+Ht1Whr+br)=σ(XtWxz+Ht1Whz+bz)

参数字典:

  • X t ∈ R n × d \boldsymbol{X}_t\in\R^{n\times d} XtRn×d 表示小批量输入

    • n n n 表示样本个数

    • n n n 表示输入个数

  • H t − 1 ∈ R n × h \boldsymbol{H}_{t-1}\in\R^{n\times h} Ht1Rn×h 表示上一个时间步的隐状态

    • h h h 表示隐藏单元个数
  • R t ∈ R n × h \boldsymbol{R}_t\in\R^{n\times h} RtRn×h 表示重置门

  • Z t ∈ R n × h \boldsymbol{Z}_t\in\R^{n\times h} ZtRn×h 表示更新门

  • W x r , W x z ∈ R d × h \boldsymbol{W}_{xr},\boldsymbol{W}_{xz}\in\R^{d\times h} Wxr,WxzRd×h W h r , W h z ∈ R h × h \boldsymbol{W}_{hr},\boldsymbol{W}_{hz}\in\R^{h\times h} Whr,WhzRh×h 表示权重参数

  • b r , b z ∈ R 1 × h b_r,b_z\in\R^{1\times h} br,bzR1×h 表示偏重参数

在求和过程中会触发广播机制。使用 sigmoid 函数将输入值转换到区间 ( 0 , 1 ) (0,1) (0,1)

9.1.1.2 候选隐状态

将重置门 R t R_t Rt 与常规隐状态更新机制集成,得到在时间步 t t t 的候选隐状态(candidate hidden state) H t ~ ∈ R n × h \tilde{\boldsymbol{H}_t}\in\R^{n\times h} Ht~Rn×h

H t ~ = t a n h ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) \tilde{\boldsymbol{H}_t}=tanh(\boldsymbol{X}_t\boldsymbol{W}_{xh}+(\boldsymbol{R}_t\odot\boldsymbol{H}_{t-1})\boldsymbol{W}_{hh}+\boldsymbol{b}_h) Ht~=tanh(XtWxh+(RtHt1)Whh+bh)

与常规隐状态更新机制公式相比, R t \boldsymbol{R}_t Rt H t − 1 \boldsymbol{H}_{t-1} Ht1 的元素相乘可以减少以往状态的影响。

  • 当重置门 R t R_t Rt 中的项接近 1 时,就恢复一个如常规隐状态更新机制公式中的普通的循环神经网络。

  • 对于重置门 R t R_t Rt 中所有接近 0 的项,候选隐状态是以 X t X_t Xt 作为输入的多层感知机的结果。因此,任何预先存在的隐状态都会被重置为默认值。

在这里插入图片描述

9.1.1.3 隐状态

上述的计算结果只是候选隐状态,接下来仍然需要结合更新门的效果。这一步确定新的隐状态 H t ∈ R n × h \boldsymbol{H}_t\in\R^{n\times h} HtRn×h 在多大程度上来自旧的状态 H t − 1 \boldsymbol{H}_{t-1} Ht1 和新的候选状态 H t ~ \tilde{\boldsymbol{H}_t} Ht~。更新门 Z t \boldsymbol{Z}_t Zt 仅需要在 H t − 1 \boldsymbol{H}_{t-1} Ht1 H t ~ \tilde{\boldsymbol{H}_t} Ht~ 之间进行按元素的凸组合就可以实现这个目标。这就得出了门控循环单元的最终更新公式:

H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H t ~ \boldsymbol{H}_t=\boldsymbol{Z}_t\odot\boldsymbol{H}_{t-1}+(1-\boldsymbol{Z}_t)\odot\tilde{\boldsymbol{H}_t} Ht=ZtHt1+(1Zt)Ht~

  • 每当更新门 Z t Z_t Zt 接近 1 时,模型就倾向只保留旧状态。此时,来自 X t X_t Xt 的信息基本上被忽略,从而有效地跳过了依赖链条中的时间步。

  • Z t Z_t Zt 接近 0 时,新的隐状态 H t H_t Ht 就会接近候选隐状态 H t ~ \tilde{\boldsymbol{H}_t} Ht~

这些设计可以帮助我们处理循环神经网络中的梯度消失问题,并更好地捕获时间步距离很长的序列的依赖关系。例如,如果整个子序列的所有时间步的更新门都接近于 1,则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。

在这里插入图片描述

总之,门控循环单元具有以下两个显著特征:

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

9.1.2 从零开始实现

import torch
from torch import nn
from d2l import torch as d2l
  • 1
  • 2
  • 3
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)  # 读取时间机器数据集
  • 1
  • 2

9.1.2.1 初始化模型参数

def get_params(vocab_size, num_hiddens, device):  # 初始化模型参数
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

9.1.2.2 定义模型

def init_gru_state(batch_size, num_hiddens, device):  # 隐状态初始化
    return (torch.zeros((batch_size, num_hiddens), device=device), )
  • 1
  • 2
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state  # 优雅,逗号解包
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)  # 更新门运算 @符号做哈达玛积
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)  # 重置门运算
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)  # 候选隐状态
        H = Z * H + (1 - Z) * H_tilda  # 隐状态计算
        Y = H @ W_hq + b_q  # 预测值计算
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

9.1.2.3 训练预测

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
  • 1
  • 2
  • 3
  • 4
  • 5
perplexity 1.0, 32229.1 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
traveller with a slight accession ofcheerfulness really thi
  • 1
  • 2
  • 3

在这里插入图片描述

9.1.3 简洁实现

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
  • 1
  • 2
  • 3
  • 4
  • 5
perplexity 1.0, 182698.8 tokens/sec on cuda:0
time traveller with a slight accession ofcheerfulness really thi
travelleryou can show black is white by argument said filby
  • 1
  • 2
  • 3

在这里插入图片描述

练习

(1)假设我们只想使用时间步 t ′ t' t 的输入来预测时间步 t > t ′ t>t' t>t 的输出。对于每个时间步,重置门和更新门的最佳值是什么?

不会。


(2)调整和分析超参数对运行时间、困惑度和输出顺序的影响。

分别修改各个参数试试、

def test(Hyperparameters):  # [batch_size, num_steps, num_hiddens, lr, num_epochs]
    train_iter_now, vocab_now = d2l.load_data_time_machine(Hyperparameters[0], Hyperparameters[1])

    gru_layer_now = nn.GRU(len(vocab_now), Hyperparameters[2])
    net_now = d2l.RNNModel(gru_layer_now, len(vocab_now))
    net_now = model.to(device)
    d2l.train_ch8(net_now, train_iter_now, vocab_now, Hyperparameters[3], Hyperparameters[4], d2l.try_gpu())

Hyperparameters_lists = [
    [64, 35, 256, 1, 500],  # 加批量大小
    [32, 64, 256, 1, 500],  # 加时间步
    [32, 35, 512, 1, 500],  # 加隐藏单元数
    [32, 35, 256, 0.5, 500],  # 减半学习率
    [32, 35, 256, 1, 200]  # 减轮数
]

for Hyperparameters in Hyperparameters_lists:
    test(Hyperparameters)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
perplexity 1.0, 194760.4 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
travelleryou can show black is white by argument said filby
  • 1
  • 2
  • 3

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


(3)比较 rnn.RNN 和 rnn.GRU 的不同实现对运行时间、困惑度和输出字符串的影响。

batch_size2, num_steps2 = 32, 35
train_iter2, vocab2 = d2l.load_data_time_machine(batch_size2, num_steps2)

vocab_size2, num_hiddens2, device = len(vocab2), 256, d2l.try_gpu()
num_epochs2, lr2 = 500, 1
num_inputs2 = vocab_size2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
gru_layer2 = nn.GRU(num_inputs2, num_hiddens2)
net_GRU = d2l.RNNModel(gru_layer2, len(vocab2))
net_GRU = model.to(device)
d2l.train_ch8(net_GRU, train_iter2, vocab2, lr2, num_epochs2, device)
  • 1
  • 2
  • 3
  • 4
perplexity 1.0, 196633.4 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
traveller with a slight accession ofcheerfulness really thi
  • 1
  • 2
  • 3

在这里插入图片描述

rnn_layer = nn.RNN(len(vocab2), num_hiddens2)
net_RNN = d2l.RNNModel(rnn_layer, vocab_size=len(vocab2))
net_RNN = net_RNN.to(device)
d2l.train_ch8(net_RNN, train_iter2, vocab2, lr2, num_epochs2, device)
  • 1
  • 2
  • 3
  • 4
perplexity 1.3, 190636.6 tokens/sec on cuda:0
time traveller held in his hand was a glitteringmetallic framewo
travellerisctallerasced fo the onther fite dok you know hom
  • 1
  • 2
  • 3

在这里插入图片描述


(4)如果仅仅实现门控循环单元的一部分,例如,只有一个重置门或一个更新门会怎样?

去掉更新门根本不带收敛的;去掉重置门还行,甚至更平滑了。

# 删除更新门

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

def get_params_change1(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    # W_xz, W_hz, b_z = three()
    W_xr, W_hr, b_r = three()
    W_xh, W_hh, b_h = three()
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    params = [W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

def init_gru_state_change1(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

def gru_change1(inputs, state, params):
    # W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        # Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        # H = Z * H + (1 - Z) * H_tilda
        Y = H_tilda @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model_change1 = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params_change1,
                            init_gru_state_change1, gru_change1)
d2l.train_ch8(model_change1, train_iter, vocab, lr, num_epochs, device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
perplexity 10.0, 45023.4 tokens/sec on cuda:0
time travellere the the the the the the the the the the the the 
travellere the the the the the the the the the the the the 
  • 1
  • 2
  • 3

在这里插入图片描述

# 删除重置门

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

def get_params_change2(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()
    # W_xr, W_hr, b_r = three()
    W_xh, W_hh, b_h = three()
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    params = [W_xz, W_hz, b_z, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

def init_gru_state_change2(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

def gru_change2(inputs, state, params):
    # W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    W_xz, W_hz, b_z, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        # R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        # H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H_tilda = torch.tanh((X @ W_xh) + (H @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H_tilda @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model_change2 = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params_change2,
                            init_gru_state_change2, gru_change2)
d2l.train_ch8(model_change2, train_iter, vocab, lr, num_epochs, device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
perplexity 1.0, 38633.7 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
traveller with a slight accession ofcheerfulness really thi
  • 1
  • 2
  • 3

在这里插入图片描述

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号