赞
踩
代码非常简单。
- import torch
- import torch.nn as nn
- from torch.autograd import Variable
- from scipy.io.wavfile import write
- #need install pydub module
- #pip install pydub
- import numpy as np
- import pydub
- from scipy import signal
- import IPython
- import matplotlib.pylab as plt
- from mpl_toolkits.mplot3d import Axes3D
- # For running on GPU
- #device = torch.device("cuda")# choose your device
- device = torch.device("cpu")
- a = torch.rand(5, 5, device=device)# change by either using the device argument
- a = a.to(device)# or by .to()
Make data
- fs = 512
- x = np.linspace(0, 20*np.pi * (1-1/(10*fs)), fs*10)
- y_sin = 0.5*np.sin(x)
- plt.plot(x, y_sin)
- plt.xlabel('Angle [rad]')
- plt.ylabel('sin(x)')
- plt.axis('tight')
- plt.show()
- y_triangle = 0.5*signal.sawtooth(x, 0.5)
- plt.plot(x, y_triangle)
- plt.xlabel('Phase [rad]')
- plt.ylabel('triangle(x)')
- plt.axis('tight')
- plt.show()
- y_saw = 0.5*signal.sawtooth(x, 1)
- plt.plot(x, y_saw)
- plt.xlabel('Phase [rad]')
- plt.ylabel('sawtooth(x)')
- plt.axis('tight')
- plt.show()
-
- # Add guassian noise
- y_sin_n = y_sin + 0.1*np.random.normal(size=len(x))
- y_triangle_n = y_triangle + 0.1*np.random.normal(size=len(x))
- y_saw_n = y_saw + 0.1*np.random.normal(size=len(x))
-
- plt.plot(x, y_sin_n)
- plt.xlabel('Angle [rad]')
- plt.ylabel('sin(x) + noise')
- plt.axis('tight')
- plt.show()
- plt.plot(x, y_triangle_n)
- plt.xlabel('Phase [rad]')
- plt.ylabel('triangle(x) + noise')
- plt.axis('tight')
- plt.show()
- plt.plot(x, y_saw_n)
- plt.xlabel('Phase [rad]')
- plt.ylabel('sawtooth(x) + noise')
- plt.axis('tight')
- plt.show()
- def give_part_of_data(x, y, n_samples=10000, sample_size=100) :
- data_inp = np.zeros((n_samples, sample_size))
- data_out = np.zeros((n_samples, sample_size))
-
- for i in range(n_samples):
- random_offset = np.random.randint(0, len(x) - sample_size)
- sample_inp = x[random_offset:random_offset+sample_size]
- sample_out = y[random_offset:random_offset+sample_size]
- data_inp[i, :] = sample_inp
- data_out[i, :] = sample_out
-
-
- return data_inp, data_out
- # Train, Validationa, and Test
- sin_train_in, sin_train_out = give_part_of_data(y_sin_n[0:int(7/10 * len(x))], y_sin[0:int(7/10 * len(x))], 2000, int(len(x)/6))
- tri_train_in, tri_train_out = give_part_of_data(y_triangle_n[0:int(7/10 * len(x))], y_triangle[0:int(7/10 * len(x))], 2000, int(len(x)/6))
- saw_train_in, saw_train_out = give_part_of_data(y_saw_n[0:int(7/10 * len(x))], y_saw[0:int(7/10 * len(x))], 2000, int(len(x)/6))
-
-
- sin_val_in, sin_val_out = y_sin_n[int(7/10 * len(x)):int(8/10 * len(x))], y_sin[int(7/10 * len(x)):int(8/10 * len(x))]
- tri_val_in, tri_val_out = y_triangle_n[int(7/10 * len(x)):int(8/10 * len(x))], y_triangle[int(7/10 * len(x)):int(8/10 * len(x))]
- saw_val_in, saw_val_out = y_saw_n[int(7/10 * len(x)):int(8/10 * len(x))], y_saw[int(7/10 * len(x)):int(8/10 * len(x))]
-
-
- sin_test_in, sin_test_out = y_sin_n[int(8/10 * len(x)):int(10/10 * len(x))], y_sin[int(8/10 * len(x)):int(10/10 * len(x))]
- tri_test_in, tri_test_out = y_triangle_n[int(8/10 * len(x)):int(10/10 * len(x))], y_triangle[int(8/10 * len(x)):int(10/10 * len(x))]
- saw_test_in, saw_test_out = y_saw_n[int(8/10 * len(x)):int(10/10 * len(x))], y_saw[int(8/10 * len(x)):int(10/10 * len(x))]
- plt.plot(range(853), sin_train_in[3])
- plt.plot(range(853), sin_train_out[3])
-
-
- plt.xlabel('Phase [rad]')
- plt.ylabel('sin(x) + noise')
- plt.axis('tight')
- plt.show()
- # RNN model
- input_dim = 1
- hidden_size_1 = 60
- hidden_size_2 = 60
- output_size = 1
-
-
- class CustomRNN(nn.Module):
- def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
- super(CustomRNN, self).__init__()
- self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)
- self.linear = nn.Linear(hidden_size_1, hidden_size_2, )
- self.act = nn.Tanh()
- self.linear = nn.Linear(hidden_size_2, output_size, )
- self.act = nn.Tanh()
-
-
- def forward(self, x):
- pred, hidden = self.rnn(x, None)
- pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)
- return pred
-
-
- model = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
- model = model.to(device)
- optimizer = torch.optim.Adam(model.parameters())
- loss_func = nn.MSELoss()
-
-
- lr = 1e-2
-
-
- for t in range(1000):
- inp = torch.Tensor(sin_train_in[..., np.newaxis] )
- inp.requires_grad = True
- inp = inp.to(device)
-
-
- out = torch.Tensor(sin_train_out[..., np.newaxis])
- out = out.to(device)
-
-
-
-
- pred = model(inp)
- optimizer.zero_grad()
- loss = loss_func(pred, out)
- if t%20==0:
- print(t, loss.data.item())
-
-
- lr = lr / 1.0001
- optimizer.param_groups[0]['lr'] = lr
- loss.backward()
- optimizer.step()
- test_in = sin_test_in
- inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
- inp = inp.to(device)
- pred = model(inp).cpu().detach().numpy()
- plt.plot(range(len(sin_test_in)), test_in)
- plt.plot(range(len(sin_test_in)), pred[0, :,0])
-
-
- plt.show
-
-
- orginal_SNR = np.sum(np.abs(sin_test_out)**2) / np.sum(np.abs(sin_test_in - sin_test_out)**2)
- orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
- print('Original SNR : ', orginal_SNR)
- print('Original SNR DB : ', orginal_SNR_db)
-
-
- network_SNR = np.sum(np.abs(sin_test_out)**2) / np.sum(np.abs(pred[0, :,0] - sin_test_out)**2)
- network_SNR_db = 10*np.log(network_SNR)/np.log(10)
- print('Network SNR : ', network_SNR)
- print('Network SNR DB : ', network_SNR_db)
- Original SNR : 12.951857235597608
- Original SNR DB : 11.123320486750668
- Network SNR : 107.29848229242438
- Network SNR DB : 20.305935790331755
- # RNN model
- input_dim = 1
- hidden_size_1 = 60
- hidden_size_2 = 60
- output_size = 1
-
-
- class CustomRNN(nn.Module):
- def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
- super(CustomRNN, self).__init__()
- self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)
- self.linear = nn.Linear(hidden_size_1, hidden_size_2, )
- self.act = nn.Tanh()
- self.linear = nn.Linear(hidden_size_2, output_size, )
- self.act = nn.Tanh()
-
-
- def forward(self, x):
- pred, hidden = self.rnn(x, None)
- pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)
- return pred
-
-
- model = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
- model = model.to(device)
- optimizer = torch.optim.Adam(model.parameters())
- loss_func = nn.MSELoss()
-
-
- lr = 1e-2
-
-
- for t in range(1000):
- inp = torch.Tensor(tri_train_in[..., np.newaxis] )
- inp.requires_grad = True
- inp = inp.to(device)
-
-
- out = torch.Tensor(tri_train_out[..., np.newaxis])
- out = out.to(device)
-
-
-
-
- pred = model(inp)
- optimizer.zero_grad()
- loss = loss_func(pred, out)
- if t%20==0:
- print(t, loss.data.item())
-
-
- lr = lr / 1.0001
- optimizer.param_groups[0]['lr'] = lr
- loss.backward()
- optimizer.step()
- test_in = tri_test_in
- inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
- inp = inp.to(device)
- pred = model(inp).cpu().detach().numpy()
- plt.plot(range(len(tri_test_in)), test_in)
- plt.plot(range(len(tri_test_in)), pred[0, :,0])
-
-
- plt.show
-
-
- orginal_SNR = np.sum(np.abs(tri_test_out)**2) / np.sum(np.abs(tri_test_in - tri_test_out)**2)
- orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
- print('Original SNR : ', orginal_SNR)
- print('Original SNR DB : ', orginal_SNR_db)
-
-
- network_SNR = np.sum(np.abs(tri_test_out)**2) / np.sum(np.abs(pred[0, :,0] - tri_test_out)**2)
- network_SNR_db = 10*np.log(network_SNR)/np.log(10)
- print('Network SNR : ', network_SNR)
- print('Network SNR DB : ', network_SNR_db)
- Original SNR : 9.06282337035853
- Original SNR DB : 9.572635159053185
- Network SNR : 46.622532666082044
- Network SNR DB : 16.685958619136
- # RNN model
- input_dim = 1
- hidden_size_1 = 60
- hidden_size_2 = 60
- output_size = 1
-
-
- class CustomRNN(nn.Module):
- def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
- super(CustomRNN, self).__init__()
- self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)
- self.linear = nn.Linear(hidden_size_1, hidden_size_2, )
- self.act = nn.Tanh()
- self.linear = nn.Linear(hidden_size_2, output_size, )
- self.act = nn.Tanh()
-
-
- def forward(self, x):
- pred, hidden = self.rnn(x, None)
- pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)
- return pred
-
-
- model = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
- model = model.to(device)
- optimizer = torch.optim.Adam(model.parameters())
- loss_func = nn.MSELoss()
-
-
- lr = 1e-2
-
-
- for t in range(1000):
- inp = torch.Tensor(tri_train_in[..., np.newaxis] )
- inp.requires_grad = True
- inp = inp.to(device)
-
-
- out = torch.Tensor(tri_train_out[..., np.newaxis])
- out = out.to(device)
-
-
-
-
- pred = model(inp)
- optimizer.zero_grad()
- loss = loss_func(pred, out)
- if t%20==0:
- print(t, loss.data.item())
-
-
- lr = lr / 1.0001
- optimizer.param_groups[0]['lr'] = lr
- loss.backward()
- optimizer.step()
- test_in = saw_test_in
- inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
- inp = inp.to(device)
- pred = model(inp).cpu().detach().numpy()
- plt.plot(range(len(saw_test_in)), test_in)
- plt.plot(range(len(saw_test_in)), pred[0, :,0])
-
-
- plt.show
-
-
- orginal_SNR = np.sum(np.abs(saw_test_out)**2) / np.sum(np.abs(saw_test_in - saw_test_out)**2)
- orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
- print('Original SNR : ', orginal_SNR)
- print('Original SNR DB : ', orginal_SNR_db)
-
-
- network_SNR = np.sum(np.abs(saw_test_out)**2) / np.sum(np.abs(pred[0, :,0] - saw_test_out)**2)
- network_SNR_db = 10*np.log(network_SNR)/np.log(10)
- print('Network SNR : ', network_SNR)
- print('Network SNR DB : ', network_SNR_db)
- Original SNR : 8.918716305325825
- Original SNR DB : 9.50302349708762
- Network SNR : 26.97065260659425
- Network SNR DB : 14.308914551667852
- 知乎学术咨询:
- https://www.zhihu.com/consult/people/792359672131756032?isMe=1
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。