赞
踩
函数模板(function template)和类模板(class template)的简单示例如下:
#include <iostream> // 函数模板 template<typename T> bool equivalent(const T& a, const T& b){ return !(a < b) && !(b < a); } // 类模板 template<typename T=int> // 默认参数 class bignumber{ T _v; public: bignumber(T a) : _v(a) { } inline bool operator<(const bignumber& b) const; // 等价于 (const bignumber<T>& b) }; // 在类模板外实现成员函数 template<typename T> bool bignumber<T>::operator<(const bignumber& b) const{ return _v < b._v; } int main() { bignumber<> a(1), b(1); // 使用默认参数,"<>"不能省略 std::cout << equivalent(a, b) << '\n'; // 函数模板参数自动推导 std::cout << equivalent<double>(1, 2) << '\n'; std::cin.get(); return 0; }
程序输出如下:
1
0
关于模板(函数模板、类模板)的模板参数:
模板特例化(template specialization,又称特例、特化)的简单示例如下:
// 实现一个向量类 template<typename T, int N> class Vec{ T _v[N]; // ... // 模板通例(primary template),具体实现 }; template<> class Vec<float, 4>{ float _v[4]; // ... // 对 Vec<float, 4> 进行专门实现,如利用向量指令进行加速 }; template<int N> class Vec<bool, N>{ char _v[(N+sizeof(char)-1)/sizeof(char)]; // ... // 对 Vec<bool, N> 进行专门实现,如用一个比特位表示一个bool };
所谓模板特例化即对于通例中的某种或某些情况做单独专门实现,最简单的情况是对每个模板参数指定一个具体值,这成为完全特例化(full specialization),另外,可以限制模板参数在一个范围取值或满足一定关系等,这称为部分特例化(partial specialization),用数学上集合的概念,通例模板参数所有可取的值组合构成全集U,完全特例化对U中某个元素进行专门定义,部分特例化对U的某个真子集进行专门定义。
更多模板特例化的例子如下(参考了文献[1]第44页):
template<typename T, int i> class cp00; // 用于模板型模板参数 // 通例 template<typename T1, typename T2, int i, template<typename, int> class CP> class TMP; // 完全特例化 template<> class TMP<int, float, 2, cp00>; // 第一个参数有const修饰 template<typename T1, typename T2, int i, template<typename, int> class CP> class TMP<const T1, T2, i, CP>; // 第一二个参数为cp00的实例且满足一定关系,第四个参数为cp00 template<typename T, int i> class TMP<cp00<T, i>, cp00<T, i+10>, i, cp00>; // 编译错误!,第四个参数类型和通例类型不一致 //template<template<int i> CP> //class TMP<int, float, 10, CP>;
关于模板特例化:
对模板的多个实例,类型等价(type equivalence)判断规则(详见文献[2] 13.2.4):同一个模板(模板名及其参数类型列表构成的模板签名(template signature)相同,函数模板可以重载,类模板不存在重载)且指定的模板实参等价(类型参数是等价类型,非类型参数值相同)。如下例子:
#include <iostream> // 识别两个类型是否相同,提前进入模板元编程^_^ template<typename T1, typename T2> // 通例,返回 false class theSameType { public: enum { ret = false }; }; template<typename T> // 特例,两类型相同时返回 true class theSameType<T, T> { public: enum { ret = true }; }; template<typename T, int i> class aTMP { }; int main(){ typedef unsigned int uint; // typedef 定义类型别名而不是引入新类型 typedef uint uint2; std::cout << theSameType<unsigned, uint2>::ret << '\n'; // 感谢 C++11,连续角括号“>>”不会被当做流输入符号而编译错误 std::cout << theSameType<aTMP<unsigned, 2>, aTMP<uint2, 2>>::ret << '\n'; std::cout << theSameType<aTMP<int, 2>, aTMP<int, 3>>::ret << '\n'; std::cin.get(); return 0; }
1
1
0
关于模板实例化(template instantiation):
隐式实例化时,成员只有被引用到才会进行实例化,这被称为推迟实例化(lazy instantiation),由此可能带来的问题如下面的例子:
#include <iostream>
template<typename T>
class aTMP {
public:
void f1() { std::cout << "f1()\n"; }
void f2() { std::ccccout << "f2()\n"; } // 敲错键盘了,语义错误:没有 std::ccccout
};
int main(){
aTMP<int> a;
a.f1();
// a.f2(); // 这句代码被注释时,aTMP<int>::f2() 不被实例化,从而上面的错误被掩盖!
std::cin.get(); return 0;
}
所以模板代码写完后最好写个诸如显示实例化的测试代码,更深入一些,可以插入一些模板调用代码使得编译器及时发现错误,而不至于报出无限长的错误信息。另一个例子如下(GCC 4.8 下编译的输出信息,VS2013 编译输出了 500 多行错误信息):
#include <iostream>
// 计算 N 的阶乘 N!
template<int N>
class aTMP{
public:
enum { ret = N==0 ? 1 : N * aTMP<N-1>::ret }; // Lazy Instantiation,将产生无限递归!
};
int main(){
std::cout << aTMP<10>::ret << '\n';
std::cin.get();
return 0;
}
sh-4.2# g++ -std=c++11 -o main *.cpp
main.cpp:7:28: error: template instantiation depth exceeds maximum of 900 (use -ftemplate-depth= to increase the maximum) instantiating 'class aTMP<-890>'
enum { ret = N==0 ? 1 : N * aTMP<N-1>::ret };
^
main.cpp:7:28: recursively required from 'class aTMP<9>'
main.cpp:7:28: required from 'class aTMP<10>'
main.cpp:11:23: required from here
main.cpp:7:28: error: incomplete type 'aTMP<-890>' used in nested name specifier
上面的错误是因为,当编译 aTMP 时,并不判断 N==0,而仅仅知道其依赖 aTMP(lazy instantiation),从而产生无限递归,纠正方法是使用模板特例化,如下:
#include <iostream> // 计算 N 的阶乘 N! template<int N> class aTMP{ public: enum { ret = N * aTMP<N-1>::ret }; }; template<> class aTMP<0>{ public: enum { ret = 1 }; }; int main(){ std::cout << aTMP<10>::ret << '\n'; std::cin.get(); return 0; }
3228800
关于模板的编译和链接(详见文献[1] 1.3、文献[4]模板):
实例化,编译链接的简单例子如下:
// file: a.cpp #include <iostream> template<typename T> class MyClass { }; template MyClass<double>::MyClass(); // 显示实例化构造函数 MyClass<double>::MyClass() template class MyClass<long>; // 显示实例化整个类 MyClass<long> template<typename T> void print(T const& m) { std::cout << "a.cpp: " << m << '\n'; } void fa() { print(1); // print<int>,隐式实例化 print(0.1); // print<double> } void fb(); // fb() 在 b.cpp 中定义,此处声明 int main(){ fa(); fb(); std::cin.get(); return 0; }
// file: b.cpp
#include <iostream>
template<typename T>
void print(T const& m) { std::cout << "b.cpp: " << m << '\n'; }
void fb() {
print('2'); // print<char>
print(0.1); // print<double>
}
a.cpp: 1a.cpp: 0.1b.cpp: 2a.cpp: 0.1
上例中,由于 a.cpp 和 b.cpp 中的 print 实例等价(模板实例的二进制代码在编译生成的对象文件 a.obj、b.obj 中),故链接时消除了一个(消除哪个没有规定,上面消除了 b.cpp 中的)。
关于 template、typename、this 关键字的使用(文献[4]模板,文献[5]):
一个例子如下(需要 GCC 编译,GCC 对 C++11 几乎全面支持,VS2013 此处总是在基类中查找名字,且函数模板前不需要 template):
#include <iostream> template<typename T> class aTMP{ public: typedef const T reType; }; void f() { std::cout << "global f()\n"; } template<typename T> class Base { public: template <int N = 99> void f() { std::cout << "member f(): " << N << '\n'; } }; template<typename T> class Derived : public Base<T> { public: typename T::reType m; // typename 不能省略 Derived(typename T::reType a) : m(a) { } void df1() { f(); } // 调用全局 f(),而非想象中的基类 f() void df2() { this->template f(); } // 基类 f<99>() void df3() { Base<T>::template f<22>(); } // 强制基类 f<22>() void df4() { ::f(); } // 强制全局 f() }; int main(){ Derived<aTMP<int>> a(10); a.df1(); a.df2(); a.df3(); a.df4(); std::cin.get(); return 0; }
global f()member f(): 99member f(): 22global f()
C++11 关于模板的新特性(详见文献[1]第15章,文献[4]C++11):
在本文中,如无特别声明将不使用 C++11 的特性(除了 “>>”)。
如果对 C++ 模板不熟悉(光熟悉语法还不算熟悉),可以先跳过本节,往下看完例子再回来。
C++ 模板最初是为实现泛型编程设计的,但人们发现模板的能力远远不止于那些设计的功能。一个重要的理论结论就是:C++ 模板是图灵完备的(Turing-complete),其证明过程请见文献[8](就是用 C++ 模板模拟图灵机),理论上说 C++ 模板可以执行任何计算任务,但实际上因为模板是编译期计算,其能力受到具体编译器实现的限制(如递归嵌套深度,C++11 要求至少 1024,C++98 要求至少 17)。C++ 模板元编程是“意外”功能,而不是设计的功能,这也是 C++ 模板元编程语法丑陋的根源。
C++ 模板是图灵完备的,这使得 C++ 成为两层次语言(two-level languages,中文暂且这么翻译,文献[9]),其中,执行编译计算的代码称为静态代码(static code),执行运行期计算的代码称为动态代码(dynamic code),C++ 的静态代码由模板实现(预处理的宏也算是能进行部分静态计算吧,也就是能进行部分元编程,称为宏元编程,见 Boost 元编程库即 BCCL,文献[16]和文献[1] 10.4)。
具体来说 C++ 模板可以做以下事情:编译期数值计算、类型计算、代码计算(如循环展开),其中数值计算实际不太有意义,而类型计算和代码计算可以使得代码更加通用,更加易用,性能更好(也更难阅读,更难调试,有时也会有代码膨胀问题)。编译期计算在编译过程中的位置请见下图(取自文献[10]),可以看到关键是模板的机制在编译具体代码(模板实例)前执行:
从编程范型(programming paradigm)上来说,C++ 模板是函数式编程(functional programming),它的主要特点是:函数调用不产生任何副作用(没有可变的存储),用递归形式实现循环结构的功能。C++ 模板的特例化提供了条件判断能力,而模板递归嵌套提供了循环的能力,这两点使得其具有和普通语言一样通用的能力(图灵完备性)。
从编程形式来看,模板的“<>”中的模板参数相当于函数调用的输入参数,模板中的 typedef 或 static const 或 enum 定义函数返回值(类型或数值,数值仅支持整型,如果需要可以通过编码计算浮点数),代码计算是通过类型计算进而选择类型的函数实现的(C++ 属于静态类型语言,编译器对类型的操控能力很强)。代码示意如下:
#include <iostream> template<typename T, int i=1> class someComputing { public: typedef volatile T* retType; // 类型计算 enum { retValume = i + someComputing<T, i-1>::retValume }; // 数值计算,递归 static void f() { std::cout << "someComputing: i=" << i << '\n'; } }; template<typename T> // 模板特例,递归终止条件 class someComputing<T, 0> { public: enum { retValume = 0 }; }; template<typename T> class codeComputing { public: static void f() { T::f(); } // 根据类型调用函数,代码计算 }; int main(){ someComputing<int>::retType a=0; std::cout << sizeof(a) << '\n'; // 64-bit 程序指针 // VS2013 默认最大递归深度500,GCC4.8 默认最大递归深度900(-ftemplate-depth=n) std::cout << someComputing<int, 500>::retValume << '\n'; // 1+2+...+500 codeComputing<someComputing<int, 99>>::f(); std::cin.get(); return 0; }
8125250someComputing: i=99
C++ 模板元编程概览框图如下(取自文献[9]):
下面我们将对图中的每个框进行深入讨论。
第一个 C++ 模板元程序是 Erwin Unruh 在 1994 年写的(文献[14]),这个程序计算小于给定数 N 的全部素数(又叫质数),程序并不运行(都不能通过编译),而是让编译器在错误信息中显示结果(直观展现了是编译期计算结果,C++ 模板元编程不是设计的功能,更像是在戏弄编译器,当然 C++11 有所改变),由于年代久远,原来的程序用现在的编译器已经不能编译了,下面的代码在原来程序基础上稍作了修改(GCC 4.8 下使用 -fpermissvie,只显示警告信息):
// Prime number computation by Erwin Unruh template<int i> struct D { D(void*); operator int(); }; // 构造函数参数为 void* 指针 template<int p, int i> struct is_prime { // 判断 p 是否为素数,即 p 不能整除 2...p-1 enum { prim = (p%i) && is_prime<(i>2?p:0), i-1>::prim }; }; template<> struct is_prime<0, 0> { enum { prim = 1 }; }; template<> struct is_prime<0, 1> { enum { prim = 1 }; }; template<int i> struct Prime_print { Prime_print<i-1> a; enum { prim = is_prime<i, i-1>::prim }; // prim 为真时, prim?1:0 为 1,int 到 D<i> 转换报错;假时, 0 为 NULL 指针不报错 void f() { D<i> d = prim?1:0; a.f(); } // 调用 a.f() 实例化 Prime_print<i-1>::f() }; template<> struct Prime_print<2> { // 特例,递归终止 enum { prim = 1 }; void f() { D<2> d = prim?1:0; } }; #ifndef LAST #define LAST 10 #endif int main() { Prime_print<LAST> a; a.f(); // 必须调用 a.f() 以实例化 Prime_print<LAST>::f()
sh-4.2# g++ -std=c++11 -fpermissive -o main *.cpp main.cpp: In member function 'void Prime_print<2>::f()': main.cpp:17:33: warning: invalid conversion from 'int' to 'void*' [-fpermissive] void f() { D<2> d = prim ? 1 : 0; } ^ main.cpp:2:28: warning: initializing argument 1 of 'D<i>::D(void*) [with int i = 2]' [-fpermissive] template<int i> struct D { D(void*); operator int(); }; ^ main.cpp: In instantiation of 'void Prime_print<i>::f() [with int i = 7]': main.cpp:13:36: recursively required from 'void Prime_print<i>::f() [with int i = 9]' main.cpp:13:36: required from 'void Prime_print<i>::f() [with int i = 10]' main.cpp:25:27: required from here main.cpp:13:33: warning: invalid conversion from 'int' to 'void*' [-fpermissive] void f() { D<i> d = prim ? 1 : 0; a.f(); } ^ main.cpp:2:28: warning: initializing argument 1 of 'D<i>::D(void*) [with int i = 7]' [-fpermissive] template<int i> struct D { D(void*); operator int(); }; ^ main.cpp: In instantiation of 'void Prime_print<i>::f() [with int i = 5]': main.cpp:13:36: recursively required from 'void Prime_print<i>::f() [with int i = 9]' main.cpp:13:36: required from 'void Prime_print<i>::f() [with int i = 10]' main.cpp:25:27: required from here main.cpp:13:33: warning: invalid conversion from 'int' to 'void*' [-fpermissive] void f() { D<i> d = prim ? 1 : 0; a.f(); } ^ main.cpp:2:28: warning: initializing argument 1 of 'D<i>::D(void*) [with int i = 5]' [-fpermissive] template<int i> struct D { D(void*); operator int(); }; ^ main.cpp: In instantiation of 'void Prime_print<i>::f() [with int i = 3]': main.cpp:13:36: recursively required from 'void Prime_print<i>::f() [with int i = 9]' main.cpp:13:36: required from 'void Prime_print<i>::f() [with int i = 10]' main.cpp:25:27: required from here main.cpp:13:33: warning: invalid conversion from 'int' to 'void*' [-fpermissive] void f() { D<i> d = prim ? 1 : 0; a.f(); } ^ main.cpp:2:28: warning: initializing argument 1 of 'D<i>::D(void*) [with int i = 3]' [-fpermissive] template<int i> struct D { D(void*); operator int(); }; ^
上面的编译输出信息只给出了前一部分,虽然信息很杂,但还是可以看到其中有 10 以内全部素数:2、3、5、7(已经加粗显示关键行)。
到目前为止,虽然已经看到了阶乘、求和等递归数值计算,但都没涉及原理,下面以求和为例讲解 C++ 模板编译期数值计算的原理:
#include <iostream>
template<int N>
class sumt{
public: static const int ret = sumt<N-1>::ret + N;
};
template<>
class sumt<0>{
public: static const int ret = 0;
};
int main() {
std::cout << sumt<5>::ret << '\n';
std::cin.get(); return 0;
}
15
当编译器遇到 sumt<5> 时,试图实例化之,sumt<5> 引用了 sumt<5-1> 即 sumt<4>,试图实例化 sumt<4>,以此类推,直到 sumt<0>,sumt<0> 匹配模板特例,sumt<0>::ret 为 0,sumt<1>::ret 为 sumt<0>::ret+1 为 1,以此类推,sumt<5>::ret 为 15。值得一提的是,虽然对用户来说程序只是输出了一个编译期常量 sumt<5>::ret,但在背后,编译器其实至少处理了 sumt<0> 到 sumt<5> 共 6 个类型。
从这个例子我们也可以窥探 C++ 模板元编程的函数式编程范型,对比结构化求和程序:for(i=0,sum=0; i<=N; ++i) sum+=i; 用逐步改变存储(即变量 sum)的方式来对计算过程进行编程,模板元程序没有可变的存储(都是编译期常量,是不可变的变量),要表达求和过程就要用很多个常量:sumt<0>::ret,sumt<1>::ret,…,sumt<5>::ret 。函数式编程看上去似乎效率低下(因为它和数学接近,而不是和硬件工作方式接近),但有自己的优势:描述问题更加简洁清晰(前提是熟悉这种方式),没有可变的变量就没有数据依赖,方便进行并行化。
模板实现的条件 if 和 while 语句如下:
// 通例为空,若不匹配特例将报错,很好的调试手段(这里是 bool 就无所谓了) template<bool c, typename Then, typename Else> class IF_ { }; template<typename Then, typename Else> class IF_<true, Then, Else> { public: typedef Then reType; }; template<typename Then, typename Else> class IF_<false,Then, Else> { public: typedef Else reType; }; // 隐含要求:Condition 返回值 ret,Statement 有类型 Next template<template<typename> class Condition, typename Statement> class WHILE_ { template<typename Statement> class STOP { public: typedef Statement reType; }; public: typedef typename IF_<Condition<Statement>::ret, WHILE_<Condition, typename Statement::Next>, STOP<Statement>>::reType::reType reType; };
IF_<> 的使用示例见下面:
const int len = 4;
typedef
IF_<sizeof(short)==len, short,
IF_<sizeof(int)==len, int,
IF_<sizeof(long)==len, long,
IF_<sizeof(long long)==len, long long,
void>::reType>::reType>::reType>::reType
int_my; // 定义一个指定字节数的类型
std::cout << sizeof(int_my) << '\n';
4
WHILE_<> 的使用示例见下面:
// 计算 1^e+2^e+...+n^e template<int n, int e> class sum_pow { template<int i, int e> class pow_e{ public: enum{ ret=i*pow_e<i,e-1>::ret }; }; template<int i> class pow_e<i,0>{ public: enum{ ret=1 }; }; // 计算 i^e,嵌套类使得能够定义嵌套模板元函数,private 访问控制隐藏实现细节 template<int i> class pow{ public: enum{ ret=pow_e<i,e>::ret }; }; template<typename stat> class cond { public: enum{ ret=(stat::ri<=n) }; }; template<int i, int sum> class stat { public: typedef stat<i+1, sum+pow<i>::ret> Next; enum{ ri=i, ret=sum }; }; public: enum{ ret = WHILE_<cond, stat<1,0>>::reType::ret }; }; int main() { std::cout << sum_pow<10, 2>::ret << '\n'; std::cin.get(); return 0; }
385
所谓元容器,就是类似于 std::vector<> 那样的容器,不过它存储的是元数据 – 类型,有了元容器,我们就可以判断某个类型是否属于某个元容器之类的操作。
在讲元容器之前,我们先来看看伪变长参数模板(文献[1] 12.4),一个可以存储小于某个数(例子中为 4 个)的任意个数,任意类型数据的元组(tuple)的例子如下(参考了文献[1] 第 225~227 页):
#include <iostream> class null_type {}; // 标签类,标记参数列表末尾 template<typename T0, typename T1, typename T2, typename T3> class type_shift_node { public: typedef T0 data_type; typedef type_shift_node<T1, T2, T3, null_type> next_type; // 参数移位了 static const int num = next_type::num + 1; // 非 null_type 模板参数个数 data_type data; // 本节点数据 next_type next; // 后续所有节点数据 type_shift_node() :data(), next() { } // 构造函数 type_shift_node(T0 const& d0, T1 const& d1, T2 const& d2, T3 const& d3) :data(d0), next(d1, d2, d3, null_type()) { } // next 参数也移位了 }; template<typename T0> // 特例,递归终止 class type_shift_node<T0, null_type, null_type, null_type> { public: typedef T0 data_type; static const int num = 1; data_type data; // 本节点数据 type_shift_node() :data(), next() { } // 构造函数 type_shift_node(T0 const& d0, null_type, null_type, null_type) : data(d0) { } }; // 元组类模板,默认参数 + 嵌套递归 template<typename T0, typename T1=null_type, typename T2=null_type, typename T3=null_type> class my_tuple { public: typedef type_shift_node<T0, T1, T2, T3> tuple_type; static const int num = tuple_type::num; tuple_type t; my_tuple(T0 const& d0=T0(),T1 const& d1=T1(),T2 const& d2=T2(),T3 const& d3=T3()) : t(d0, d1, d2, d3) { } // 构造函数,默认参数 }; // 为方便访问元组数据,定义 get<unsigned>(tuple) 函数模板 template<unsigned i, typename T0, typename T1, typename T2, typename T3> class type_shift_node_traits { public: typedef typename type_shift_node_traits<i-1,T0,T1,T2,T3>::node_type::next_type node_type; typedef typename node_type::data_type data_type; static node_type& get_node(type_shift_node<T0,T1,T2,T3>& node) { return type_shift_node_traits<i-1,T0,T1,T2,T3>::get_node(node).next; } }; template<typename T0, typename T1, typename T2, typename T3> class type_shift_node_traits<0, T0, T1, T2, T3> { public: typedef typename type_shift_node<T0,T1,T2,T3> node_type; typedef typename node_type::data_type data_type; static node_type& get_node(type_shift_node<T0,T1,T2,T3>& node) { return node; } }; template<unsigned i, typename T0, typename T1, typename T2, typename T3> typename type_shift_node_traits<i,T0,T1,T2,T3>::data_type get(my_tuple<T0,T1,T2,T3>& tup) { return type_shift_node_traits<i,T0,T1,T2,T3>::get_node(tup.t).data; } int main(){ typedef my_tuple<int, char, float> tuple3; tuple3 t3(10, 'm', 1.2f); std::cout << t3.t.data << ' ' << t3.t.next.data << ' ' << t3.t.next.next.data << '\n'; std::cout << tuple3::num << '\n'; std::cout << get<2>(t3) << '\n'; // 从 0 开始,不要出现 3,否则将出现不可理解的编译错误 std::cin.get(); return 0; }
10 m 1.231.2
C++11 引入了变长模板参数,其背后的原理也是模板递归(文献[1]第 230 页)。
利用和上面例子类似的模板参数移位递归的原理,我们可以构造一个存储“类型”的元组,即元容器,其代码如下:
#include <iostream> // 元容器 template<typename T0=void, typename T1=void, typename T2=void, typename T3=void> class meta_container { public: typedef T0 type; typedef meta_container<T1, T2, T3, void> next_node; // 参数移位了 static const int size = next_node::size + 1; // 非 null_type 模板参数个数 }; template<> // 特例,递归终止 class meta_container<void, void, void, void> { public: typedef void type; static const int size = 0; }; // 访问元容器中的数据 template<typename C, unsigned i> class get { public: static_assert(i<C::size, "get<C,i>: index exceed num"); // C++11 引入静态断言 typedef typename get<C,i-1>::c_type::next_node c_type; typedef typename c_type::type ret_type; }; template<typename C> class get<C, 0> { public: static_assert(0<C::size, "get<C,i>: index exceed num"); // C++11 引入静态断言 typedef C c_type; typedef typename c_type::type ret_type; }; // 在元容器中查找某个类型,找到返回索引,找不到返回 -1 template<typename T1, typename T2> class same_type { public: enum { ret = false }; }; template<typename T> class same_type<T, T> { public: enum { ret = true }; }; template<bool c, typename Then, typename Else> class IF_ { }; template<typename Then, typename Else> class IF_<true, Then, Else> { public: typedef Then reType; }; template<typename Then, typename Else> class IF_<false, Then, Else> { public: typedef Else reType; }; template<typename C, typename T> class find { template<int i> class number { public: static const int ret = i; }; template<typename C, typename T, int i> class find_i { public: static const int ret = IF_< same_type<get<C,i>::ret_type, T>::ret, number<i>, find_i<C,T,i-1> >::reType::ret; }; template<typename C, typename T> class find_i<C, T, -1> { public: static const int ret = -1; }; public: static const int ret = find_i<C, T, C::size-1>::ret; }; int main(){ typedef meta_container<int, int&, const int> mc; int a = 9999; get<mc, 1>::ret_type aref = a; std::cout << mc::size << '\n'; std::cout << aref << '\n'; std::cout << find<mc, const int>::ret << '\n'; std::cout << find<mc, float>::ret << '\n'; std::cin.get(); return 0; }
399992-1
上面例子已经实现了存储类型的元容器,和元容器上的查找算法,但还有一个小问题,就是它不能处理模板,编译器对模板的操纵能力远不如对类型的操纵能力强(提示:类模板实例是类型),我们可以一种间接方式实现存储“模板元素”,即用模板的一个代表实例(如全用 int 为参数的实例)来代表这个模板,这样对任意模板实例,只需判断其模板的代表实例是否在容器中即可,这需要进行类型过滤:对任意模板的实例将其替换为指定模板参数的代表实例,类型过滤实例代码如下(参考了文献[1]第 241 页):
// 类型过滤,meta_filter 使用时只用一个参数,设置四个模板参数是因为,模板通例的参数列表 // 必须能够包含特例参数列表,后面三个参数设置默认值为 void 或标签模板 template<typename T> class dummy_template_1 {}; template<typename T0, typename T1> class dummy_template_2 {}; template<typename T0, typename T1 = void, template<typename> class tmp_1 = dummy_template_1, template<typename, typename> class tmp_2 = dummy_template_2> class meta_filter { // 通例,不改变类型 public: typedef T0 ret_type; }; // 匹配任何带有一个类型参数模板的实例,将模板实例替换为代表实例 template<template<typename> class tmp_1, typename T> class meta_filter<tmp_1<T>, void, dummy_template_1, dummy_template_2> { public: typedef tmp_1<int> ret_type; }; // 匹配任何带有两个类型参数模板的实例,将模板实例替换为代表实例 template<template<typename, typename> class tmp_2, typename T0, typename T1> class meta_filter<tmp_2<T0, T1>, void, dummy_template_1, dummy_template_2> { public: typedef tmp_2<int, int> ret_type; };
现在,只需将上面元容器和元容器查找函数修改为:对模板实例将其换为代表实例,即修改 meta_container<> 通例中“typedef T0 type;”语句为“typedef typename meta_filter::ret_type type;”,修改 find<> 的最后一行中“T”为“typename meta_filter::ret_type”。修改后,下面代码的执行结果是:
template<typename, typename> class my_tmp_2;
// 自动将 my_tmp_2<float, int> 过滤为 my_tmp_2<int, int>
typedef meta_container<int, float, my_tmp_2<float, int>> mc2;
// 自动将 my_tmp_2<char, double> 过滤为 my_tmp_2<int, int>
std::cout << find<mc2, my_tmp_2<char, double>>::ret << '\n'; // 输出 2
2
博文比较长,总结一下所涉及的东西:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。