当前位置:   article > 正文

【Cartographer参数详解,调参,降低计算量调优笔记记录】

cartographer参数详解

Cartographer学习记录



前言

最近同学都在卷论文,刷力扣,自己的导师比较松也没有一个很好的学习氛围,为了敦促自己决定开始做一些以前不会做的事,养成一些新的习惯。计划在这学期完成cartographer的学习,并在CSDN做一些记录,虽是他山之石,但也是迈出的第一步,共勉。


提示:以下是本篇文章正文内容,下面案例可供参考

一、cartographer参数详解

说明:分析所用的一些launch和lua文件是跟着学习的讲师所配置的,由官方下载的雷达2d.lua文件基础上配置成的,配合相应的雷达包可以直接运行,具有实际应用的参考价值。运行部分会另开一篇文章进行介绍,此篇主要是参数介绍。rviz中建图过程如下所示:在这里插入图片描述
最终结果如下图所示:
在这里插入图片描述

二、.lua文件参数详解

1.rs16_2d_outdoor.lua

如文件名所示,该配置文件进行的是rs16多线激光雷达录制的室外bag使用时的参数配置,建立的地图为2d形式。重要的参数提出来重写,原来所在的位置:如TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80,即在trajectory_builder_2d.lua的submaps函数中找num_range_data,相应的注释也在子lua文件中

-- Copyright 2016 The Cartographer Authors
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
--      http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.

include "map_builder.lua"                   --包含的cartographer里的lua文件
include "trajectory_builder.lua"

options = {
  map_builder = MAP_BUILDER,                -- map_builder.lua的配置信息
  trajectory_builder = TRAJECTORY_BUILDER,  -- trajectory_builder.lua的配置信息
  
  map_frame = "map",                        -- 地图坐标系的名字
  tracking_frame = "imu_link",              -- 将所有传感器数据转换到这个坐标系下,如果有imu的,就写imu的link,如果没有,就写base_link或者footprint,
                                            --因为cartographer会将所有传感器进行坐标变换到tracking_fram坐标系下,每个传感器的频率不一样,imu频率远高于雷达的频率,这样做可以减少计算量
  published_frame = "footprint",            -- tf: map -> footprint 自己bag的tf最上面的坐标系的名字
  odom_frame = "odom",                      -- 里程计的坐标系名字
  provide_odom_frame = false,               -- 是否提供odom的tf, 如果为true,则tf树为map->odom->footprint
                                            -- 如果为false tf树为map->footprint
  publish_frame_projected_to_2d = false,    -- 是否将坐标系投影到平面上,没啥用
  --use_pose_extrapolator = false,            -- 发布tf时是使用pose_extrapolator的位姿还是前端计算出来的位姿,前端计算的位姿更准

  use_odometry = false,                     -- 是否使用里程计,如果使用要求一定要有odom的tf *
  use_nav_sat = false,                      -- 是否使用gps *topic形式订阅,不可订阅多个里程计/gps/landmark,要注意做重映射
  use_landmarks = false,                    -- 是否使用landmark *
  num_laser_scans = 0,                      -- 是否使用单线激光数据,可订阅多个
  num_multi_echo_laser_scans = 0,           -- 是否使用multi_echo_laser_scans数据
  num_subdivisions_per_laser_scan = 1,      -- 1帧数据被分成几次处理,一般为1
  num_point_clouds = 1,                     -- 是否使用点云数据
  
  lookup_transform_timeout_sec = 0.2,       -- 查找tf时的超时时间
  submap_publish_period_sec = 0.3,          -- 发布数据的时间间隔
  pose_publish_period_sec = 5e-3,
  trajectory_publish_period_sec = 30e-3,

  rangefinder_sampling_ratio = 1.,          -- 传感器数据的采样频率
  odometry_sampling_ratio = 1.,             --设成0.1即来10帧用1帧
  fixed_frame_pose_sampling_ratio = 1.,     --某个传感器不准,可以降低其使用频率
  imu_sampling_ratio = 1.,                  --如若不准,一般直接弃用即可
  landmarks_sampling_ratio = 1.,
}

MAP_BUILDER.use_trajectory_builder_2d = true   --之前进行include已经包含在该文件中了,这里进行重写,列出的都为比较重要的参数
--在这里进行重写就会覆盖子文件中的参数

TRAJECTORY_BUILDER_2D.use_imu_data = true
TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 100.
TRAJECTORY_BUILDER_2D.min_z = 0.2
--TRAJECTORY_BUILDER_2D.max_z = 1.4
--TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02

--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_length = 0.5
--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.min_num_points = 200.
--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 50.

--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_length = 0.9
--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.min_num_points = 100
--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 50.

TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = false
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
--TRAJECTORY_BUILDER_2D.ceres_scan_matcher.ceres_solver_options.max_num_iterations = 12

--TRAJECTORY_BUILDER_2D.motion_filter.max_distance_meters = 0.1
--TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = 0.004
--TRAJECTORY_BUILDER_2D.imu_gravity_time_constant = 1.

TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1

POSE_GRAPH.optimize_every_n_nodes = 160.
POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
POSE_GRAPH.constraint_builder.min_score = 0.48
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60

return options
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89

2.trajectory_builder.lua

rs16_2d_outdoor.lua中包含的子lua文件

include "trajectory_builder_2d.lua"
include "trajectory_builder_3d.lua"

TRAJECTORY_BUILDER = {
  trajectory_builder_2d = TRAJECTORY_BUILDER_2D,
  trajectory_builder_3d = TRAJECTORY_BUILDER_3D,
--  pure_localization_trimmer = {
--    max_submaps_to_keep = 3,
--  },
  collate_fixed_frame = true, -- 是否将数据放入阻塞队列中
  collate_landmarks = false,  -- 是否将数据放入阻塞队列中
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

3.trajectory_builder_2d.lua

trajectory_builder.lua中包含的子lua文件,如更改是否使用imu数据也需要在此处进行修改

TRAJECTORY_BUILDER_2D = {
  use_imu_data = true,            -- 是否使用imu数据
  min_range = 0.,                 -- 雷达数据的最远最近滤波, 保存中间值
  max_range = 30.,
  min_z = -0.8,                   -- 雷达数据的最高与最低的过滤, 保存中间值
  max_z = 2.,
  missing_data_ray_length = 5.,   -- 超过最大距离范围的数据点(NaN点)或反射较弱的点,即表明周围较空,用这个距离代替
  num_accumulated_range_data = 1, -- 几帧有效的点云数据进行一次扫描匹配
  voxel_filter_size = 0.025,      -- 体素滤波的立方体的边长

  -- 使用固定的voxel滤波之后, 再使用自适应体素滤波器
  -- 体素滤波器 用于生成稀疏点云 以进行 扫描匹配
  adaptive_voxel_filter = {
    max_length = 0.5,             -- 尝试确定最佳的立方体边长, 边长最大为0.5
    min_num_points = 200,         -- 如果存在 较多点 并且大于'min_num_points', 则减小体素长度以尝试获得该最小点数
    max_range = 50.,              -- 距远离原点超过max_range 的点被移除
  },

  -- 闭环检测的自适应体素滤波器, 用于生成稀疏点云 以进行 闭环检测
  loop_closure_adaptive_voxel_filter = {
    max_length = 0.9,
    min_num_points = 100,
    max_range = 50.,
  },

  -- 是否使用 real_time_correlative_scan_matcher 为ceres提供先验信息
  -- 计算复杂度高 , 但是很鲁棒 , 在odom或者imu不准时依然能达到很好的效果
  --如只使用单线激光雷达,频率又很低,建图效果不好总是叠图,可以打开,在扫描匹配前就提供先验信息
  use_online_correlative_scan_matching = false,
  real_time_correlative_scan_matcher = {
    linear_search_window = 0.1,             -- 线性搜索窗口的大小
    angular_search_window = math.rad(20.),  -- 角度搜索窗口的大小
    translation_delta_cost_weight = 1e-1,   -- 用于计算各部分score的权重
    rotation_delta_cost_weight = 1e-1,
  },

  -- ceres匹配的一些配置参数,优化残差相关
  ceres_scan_matcher = {
    occupied_space_weight = 1.,
    translation_weight = 10.,
    rotation_weight = 40.,
    ceres_solver_options = {
      use_nonmonotonic_steps = false,
      max_num_iterations = 20,
      num_threads = 1,
    },
  },

  -- 为了防止子图里插入太多数据, 在插入子图之前之前对数据进行过滤
  motion_filter = {
    max_time_seconds = 5.,
    max_distance_meters = 0.2,
    max_angle_radians = math.rad(1.),
  },

  -- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
  imu_gravity_time_constant = 10.,

  -- 位姿预测器
  pose_extrapolator = {
    use_imu_based = false,
    constant_velocity = {
      imu_gravity_time_constant = 10.,
      pose_queue_duration = 0.001,
    },
    imu_based = {
      pose_queue_duration = 5.,
      gravity_constant = 9.806,
      pose_translation_weight = 1.,
      pose_rotation_weight = 1.,
      imu_acceleration_weight = 1.,
      imu_rotation_weight = 1.,
      odometry_translation_weight = 1.,
      odometry_rotation_weight = 1.,
      solver_options = {
        use_nonmonotonic_steps = false;
        max_num_iterations = 10;
        num_threads = 1;
      },
    },
  },

  -- 子图相关的一些配置
  submaps = {
    num_range_data = 90,          -- 一个子图里插入雷达数据的个数的一半
    grid_options_2d = {
      grid_type = "PROBABILITY_GRID", -- 地图的种类, 还可以是tsdf格式
      resolution = 0.05,          --地图的分辨率,重要
    },
    range_data_inserter = {
      range_data_inserter_type = "PROBABILITY_GRID_INSERTER_2D",
      -- 概率占用栅格地图的一些配置
      probability_grid_range_data_inserter = {
        insert_free_space = true,
        hit_probability = 0.55,
        miss_probability = 0.49,
      },
      -- tsdf地图的一些配置
      tsdf_range_data_inserter = {
        truncation_distance = 0.3,
        maximum_weight = 10.,
        update_free_space = false,
        normal_estimation_options = {
          num_normal_samples = 4,
          sample_radius = 0.5,
        },
        project_sdf_distance_to_scan_normal = true,
        update_weight_range_exponent = 0,
        update_weight_angle_scan_normal_to_ray_kernel_bandwidth = 0.5,
        update_weight_distance_cell_to_hit_kernel_bandwidth = 0.5,
      },
    },
  },
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

3.trajectory_builder_3d.lua

trajectory_builder.lua中包含的子lua文件,以上都是前端一些扫描匹配的参数

MAX_3D_RANGE = 60.
INTENSITY_THRESHOLD = 40

TRAJECTORY_BUILDER_3D = {
  min_range = 1.,
  max_range = MAX_3D_RANGE,
  num_accumulated_range_data = 1,
  voxel_filter_size = 0.15,

  --3d slam 时会有2个自适应体素滤波, 一个生成高分辨率点云, 一个生成低分辨率点云
  high_resolution_adaptive_voxel_filter = {
    max_length = 2.,
    min_num_points = 150,
    max_range = 15.,
  },

  low_resolution_adaptive_voxel_filter = {
    max_length = 4.,
    min_num_points = 200,
    max_range = MAX_3D_RANGE,
  },

  use_online_correlative_scan_matching = false,
  real_time_correlative_scan_matcher = {
    linear_search_window = 0.15,
    angular_search_window = math.rad(1.),
    translation_delta_cost_weight = 1e-1,
    rotation_delta_cost_weight = 1e-1,
  },

  ceres_scan_matcher = {
    --3D中,occupied_space_weight_0和occupied_space_weight_1参数分别与高分辨率和低分辨率滤波点云相关
    occupied_space_weight_0 = 1.,
    occupied_space_weight_1 = 6.,
    intensity_cost_function_options_0 = {
        weight = 0.5,
        huber_scale = 0.3,
        intensity_threshold = INTENSITY_THRESHOLD,
    },
    translation_weight = 5.,
    rotation_weight = 4e2,
    only_optimize_yaw = false,
    ceres_solver_options = {
      use_nonmonotonic_steps = false,
      max_num_iterations = 12,
      num_threads = 1,
    },
  },

  motion_filter = {
    max_time_seconds = 0.5,
    max_distance_meters = 0.1,
    max_angle_radians = 0.004,
  },

  rotational_histogram_size = 120,

  -- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
  imu_gravity_time_constant = 10.,
  pose_extrapolator = {
    use_imu_based = false,
    constant_velocity = {
      imu_gravity_time_constant = 10.,
      pose_queue_duration = 0.001,
    },
    -- TODO(wohe): Tune these parameters on the example datasets.
    imu_based = {
      pose_queue_duration = 5.,
      gravity_constant = 9.806,
      pose_translation_weight = 1.,
      pose_rotation_weight = 1.,
      imu_acceleration_weight = 1.,
      imu_rotation_weight = 1.,
      odometry_translation_weight = 1.,
      odometry_rotation_weight = 1.,
      solver_options = {
        use_nonmonotonic_steps = false;
        max_num_iterations = 10;
        num_threads = 1;
      },
    },
  },

  submaps = {
    -- 2种分辨率的地图
    high_resolution = 0.10,           -- 用于近距离测量的高分辨率hybrid网格 for local SLAM and loop closure, 用来与小尺寸voxel进行精匹配
    high_resolution_max_range = 20.,  -- 在插入 high_resolution map 之前过滤点云的最大范围
    low_resolution = 0.45,
    num_range_data = 160,             -- 用于远距离测量的低分辨率hybrid网格 for local SLAM only, 用来与大尺寸voxel进行粗匹配
    range_data_inserter = {
      hit_probability = 0.55,
      miss_probability = 0.49,
      num_free_space_voxels = 2,
      intensity_threshold = INTENSITY_THRESHOLD,
    },
  },

  -- When setting use_intensites to true, the intensity_cost_function_options_0
  -- parameter in ceres_scan_matcher has to be set up as well or otherwise
  -- CeresScanMatcher will CHECK-fail.
  use_intensities = false,
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102

4.map_builder.lua

rs16_2d_outdoor.lua中包含的子lua文件

include "pose_graph.lua"

MAP_BUILDER = {
  use_trajectory_builder_2d = false,     --2d和3d一定要有一个为true,且只能有一个,可以在1中的主lua里重写配置
  use_trajectory_builder_3d = false,
  num_background_threads = 4,
  pose_graph = POSE_GRAPH,
  collate_by_trajectory = false,
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

5.pose_graph.lua

map_builder.lua中包含的子lua文件,主要为后端参数设置

-- Copyright 2016 The Cartographer Authors
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
--      http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.

POSE_GRAPH = {
  -- 每隔多少个节点执行一次后端优化
  optimize_every_n_nodes = 90, --一般设置成2倍的submaps.num_range_data

  -- 约束构建的相关参数
  constraint_builder = {
    sampling_ratio = 0.3,                 -- 对局部子图进行回环检测时的计算频率, 数值越大, 计算次数越多
    max_constraint_distance = 15.,        -- 对局部子图进行回环检测时能成为约束的最大距离
    min_score = 0.55,                     -- 对局部子图进行回环检测时的最低分数阈值
    global_localization_min_score = 0.6,  -- 对整体子图进行回环检测时的最低分数阈值
    loop_closure_translation_weight = 1.1e4,
    loop_closure_rotation_weight = 1e5,
    log_matches = true,                   -- 打印约束计算的log
    
    -- 基于分支定界算法的2d粗匹配器
    fast_correlative_scan_matcher = {
      linear_search_window = 7.,
      angular_search_window = math.rad(30.),
      branch_and_bound_depth = 7,
    },

    -- 基于ceres的2d精匹配器
    ceres_scan_matcher = {
      occupied_space_weight = 20.,
      translation_weight = 10.,
      rotation_weight = 1.,
      ceres_solver_options = {
        use_nonmonotonic_steps = true,
        max_num_iterations = 10,
        num_threads = 1,
      },
    },

    -- 基于分支定界算法的3d粗匹配器
    fast_correlative_scan_matcher_3d = {
      branch_and_bound_depth = 8,
      full_resolution_depth = 3,
      min_rotational_score = 0.77,
      min_low_resolution_score = 0.55,
      linear_xy_search_window = 5.,
      linear_z_search_window = 1.,
      angular_search_window = math.rad(15.),
    },

    -- 基于ceres的3d精匹配器
    ceres_scan_matcher_3d = {
      occupied_space_weight_0 = 5.,
      occupied_space_weight_1 = 30.,
      translation_weight = 10.,
      rotation_weight = 1.,
      only_optimize_yaw = false,
      ceres_solver_options = {
        use_nonmonotonic_steps = false,
        max_num_iterations = 10,
        num_threads = 1,
      },
    },
  },

  matcher_translation_weight = 5e2,
  matcher_rotation_weight = 1.6e3,

  -- 优化残差方程的相关参数
  optimization_problem = {
    huber_scale = 1e1,                -- 值越大,(潜在)异常值的影响就越大
    acceleration_weight = 1.1e2,      -- 3d里imu的线加速度的权重
    rotation_weight = 1.6e4,          -- 3d里imu的旋转的权重
    
    -- 前端结果残差的权重
    local_slam_pose_translation_weight = 1e5,
    local_slam_pose_rotation_weight = 1e5,
    -- 里程计残差的权重
    odometry_translation_weight = 1e5,
    odometry_rotation_weight = 1e5,
    -- gps残差的权重
    fixed_frame_pose_translation_weight = 1e1,
    fixed_frame_pose_rotation_weight = 1e2,
    fixed_frame_pose_use_tolerant_loss = false,
    fixed_frame_pose_tolerant_loss_param_a = 1,
    fixed_frame_pose_tolerant_loss_param_b = 1,

    log_solver_summary = false,
    use_online_imu_extrinsics_in_3d = true,
    fix_z_in_3d = false,
    ceres_solver_options = {
      use_nonmonotonic_steps = false,
      max_num_iterations = 50,
      num_threads = 7,
    },
  },

  max_num_final_iterations = 200,   -- 在建图结束之后执行一次全局优化, 不要求实时性, 迭代次数多
  global_sampling_ratio = 0.003,    -- 纯定位时候查找回环的频率
  log_residual_histograms = true,
  global_constraint_search_after_n_seconds = 10., -- 纯定位时多少秒执行一次全子图的约束计算

  --  overlapping_submaps_trimmer_2d = {
  --    fresh_submaps_count = 1,
  --    min_covered_area = 2,
  --    min_added_submaps_count = 5,
  --  },
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116

三、调参总结

1.调参总结

将常用的调整参数列写如下:

--雷达的最大最小距离
TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 100.
--使用多高以上的点云,单线的时候不要设置,多线防止打到地面上的点干扰建图
TRAJECTORY_BUILDER_2D.min_z = 0.2 -- / -0.8
--体素滤波参数
TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
--ceres地图的扫描,平移,旋转的权重,影响建图效果,其他基本上是影响计算量等
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 10.--扫描匹配点云和地图匹配程度,值越大,点云和地图匹配置信度越高
 --残差平移、旋转分量,值越大,越不相信和地图匹配的效果,而是越相信先验位姿的结果
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1. 
--如果imu不好,接入后地图旋转厉害,可以将这里的旋转权重减小
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.

--一个子图插入多少个节点,optimize_every_n_nodes=80*2
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1 -- / 0.02
POSE_GRAPH.optimize_every_n_nodes = 160. -- 2倍的num_range_data以上
POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
--回环检测阈值,如果不稳定有错误匹配,可以提高这两个值,场景重复可以降低或者关闭回环
POSE_GRAPH.constraint_builder.min_score = 0.48
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

2.wheeltec调参实例

wheeltec大车出现建图效果很差的情况,可以通过调整一下参数进行调整,同时还可以通过降低调整旋转的权重改善旋转时候偏差过大;同时在走廊里进行建图时,因为走廊中场景重复度较高,回环检测导致误匹配,此时关了回环检测用纯激光建图即可。
在这里插入图片描述

3.降低延迟与减少计算量、降低纯定位时错误重定位的概率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/876926
推荐阅读
相关标签
  

闽ICP备14008679号