赞
踩
原理来自百度百科 推荐数据演示网址 :https://www.cs.usfca.edu/~galles/visualization/BST.html
一、什么是二叉树
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的(i-1)次方个结点;深度为k的二叉树至多有2的k次方然后减1个结点(次方不会敲所以用文字描述);对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
二、二叉树的分类:
1、满二叉树:除叶子结点外的所有结点均有两个子结点。
满二叉树的性质:
一颗树深度为h,最大层数为k,深度与最大层数相同,k=h;
树的第k层,则该层的叶子节点个数为2k;
第k层的结点个数是2的(k-1)次方。
总结点个数是2的k次方减1,且总节点个数一定是奇数。
2、完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。
完全二叉树的特点是:
1)只允许最后一层有空缺结点且空缺在右边,即叶子结点只能在层次最大的两层上出现;
2)对任一结点,如果其右子树的深度为j,则其左子树的深度必为j或j+1。 即度为1的点只有1个或0个。
满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树。
三、二叉树在数据结构中的实现
二叉树在一般数据结构中是按照二叉排序树进行实现、使用的。二叉排序树(Binary Sort Tree):又称二叉查找树(Binary Search Tree),亦称二叉搜索树。
二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。