当前位置:   article > 正文

贝叶斯分类算法实例--根据姓名推测男女(一)_某个医院早上收了八个门诊病人

某个医院早上收了八个门诊病人

一.从贝叶斯公式开始
贝叶斯分类其实是利用用贝叶斯公式,算出每种情况下发生的概率,再取概率较大的一个分类作为结果。我们先来看看贝叶斯公式:

P(A|B) = P(B|A) P(A) / P(B)

其中P(A|B)是指在事件B发生的情况下事件A发生的概率。

在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。
  • P(A)是A的先验概率(或边缘概率)。之所以称为"先验"是因为它不考虑任何B方面的因素。
  • P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。
  • P(B)是B的先验概率或边缘概率。

这里可以用一个例子来说明这个公式。

看一个简单的小例子来展示贝叶斯定理

病人的例子:
某个医院早上收了八个门诊病人,如下表
在这里插入图片描述
现在又来了第九个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

P(A|B) = P(B|A) P(A) / P(B)

可得满足“打喷嚏”和“建筑工人”两个条件下,感冒的概率如下:

如果你对python感兴趣,我这有个学习Python基地,里面有很多学习资料,感兴趣的+Q群:688244617

 P(感冒|打喷嚏x建筑工人)
= P(打喷嚏x建筑工人
  • 1
  • 2
  • 3
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/915939
推荐阅读
相关标签
  

闽ICP备14008679号