赞
踩
弗洛伊德算法(Floyd)和路径平滑弗洛伊德算法(Smooth Floyd)学习-CSDN博客
目录
在机器人的路径规划中少不了DWA算法,学习!!!
DWA动态窗口法的原理及应用:The Dynamic Window Approach to Collision Avoidance - 知乎 (zhihu.com)
自动驾驶决策规划算法—DWA 动态窗口法 - 知乎 (zhihu.com)
动态窗口法(Dynamic Window Approach, DWA)是一种避障规划方法,DWA算法通过对速度空间施加约束以确保动力学模型和避障的要求,在速度空间中搜索机器人最优控制速度,最终实现快速安全地到达目的地。
DWA算法的实现主要由两部分组成: 1.减小速度空间2.定义目标函数,并最大化目标函数
通过施加弧线轨迹、允许速度、滑动窗口约束以减小搜索空间。
弧线轨迹 Circular trajectories
在原论文中,作者对简化了机器人的运动学模型,并得出了机器人运动轨迹可由一系列弧线和直线组成。所以,作者将速度空间约束在由机器人的平移速度和旋转速度(v,w)组成的二维速度搜索空间。
允许速度 Admissible velocities
允许速度(Admissible velocities)确保机器人可以在障碍前停下,最大的允许速度取决于当前轨迹距最近障碍的距离dist(v,w)。允许速度集被定义为:
下图中展示了Vs,Va速度空间:
滑动窗口 Dynamic window
考虑到机器人存在加速度限制,搜索空间被限定动态窗口Vd中(在下一个规划间隔可达到的速度),具体如下:
其中,v˙,w˙表示机器人的加速度。
最终的搜索空间:Vr=Vs∩Va∩Vd,如下图所示:
目标函数考虑了方位角、安全距离和速度:
目标函数被定义为:
其中, , , 可以根据需求调整。这三个指标是目标函数的重要组成部分,缺一不可。仅使clearance和velocity最大化,机器人始终在无障碍空间运动,但不会有向目标位置移动的趋势。单独最大化heading,机器人很快就会被阻碍其前进的第一个障碍所阻挡,无法在其周围移动。通过组合三个指标,机器人在上述限制条件下能够快速地绕过碰撞,同时朝着目标方向运动。
具体的DWA算法参考:https://github.com/AtsushiSakai/PythonRoboticsGifsplanning
函数讲解
动态窗口
创建动态窗口
- def calc_dynamic_window(x, config):
- """
- calculation dynamic window based on current state x
- """
-
- # Dynamic window from robot specification
- Vs = [config.min_speed, config.max_speed,
- -config.max_yaw_rate, config.max_yaw_rate]
-
- # Dynamic window from motion model
- Vd = [x[3] - config.max_accel * config.dt,
- x[3] + config.max_accel * config.dt,
- x[4] - config.max_delta_yaw_rate * config.dt,
- x[4] + config.max_delta_yaw_rate * config.dt]
-
- # [v_min, v_max, yaw_rate_min, yaw_rate_max]
- dw = [max(Vs[0], Vd[0]), min(Vs[1], Vd[1]),
- max(Vs[2], Vd[2]), min(Vs[3], Vd[3])]
-
- return dw
'运行
计算动态窗口内最优速度和最优轨迹
- def calc_control_and_trajectory(x, dw, config, goal, ob):
- """
- calculation final input with dynamic window
- """
-
- x_init = x[:]
- min_cost = float("inf")
- best_u = [0.0, 0.0]
- best_trajectory = np.array([x])
-
- # evaluate all trajectory with sampled input in dynamic window
- for v in np.arange(dw[0], dw[1], config.v_resolution):
- # v_resolution: speed interval
- for y in np.arange(dw[2], dw[3], config.yaw_rate_resolution):
- # yaw_rate_resolution: yaw_rate interval
- trajectory = predict_trajectory(x_init, v, y, config)
- # calc cost
- to_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(trajectory, goal)
- speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
- ob_cost = config.obstacle_cost_gain * calc_obstacle_cost(trajectory, ob, config)
-
- final_cost = to_goal_cost + speed_cost + ob_cost
-
- # search minimum trajectory
- if min_cost >= final_cost:
- min_cost = final_cost
- best_u = [v, y]
- best_trajectory = trajectory
- if abs(best_u[0]) < config.robot_stuck_flag_cons \
- and abs(x[3]) < config.robot_stuck_flag_cons:
- # to ensure the robot do not get stuck in
- # best v=0 m/s (in front of an obstacle) and
- # best omega=0 rad/s (heading to the goal with
- # angle difference of 0)
- best_u[1] = -config.max_delta_yaw_rate
- return best_u, best_trajectory
'运行
目标函数
- def calc_to_goal_cost(trajectory, goal):
- """
- calc to goal cost with angle difference
- """
-
- dx = goal[0] - trajectory[-1, 0]
- dy = goal[1] - trajectory[-1, 1]
- error_angle = math.atan2(dy, dx)
- cost_angle = error_angle - trajectory[-1, 2]
- cost = abs(math.atan2(math.sin(cost_angle), math.cos(cost_angle)))
-
- return cost
'运行
- def calc_obstacle_cost(trajectory, ob, config):
- """
- calc obstacle cost inf: collision
- """
- ox = ob[:, 0]
- oy = ob[:, 1]
- dx = trajectory[:, 0] - ox[:, None]
- dy = trajectory[:, 1] - oy[:, None]
- # r = sqrt(dx^2 + dy^2)
- r = np.hypot(dx, dy)
-
- if config.robot_type == RobotType.rectangle:
- yaw = trajectory[:, 2]
- rot = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]])
- rot = np.transpose(rot, [2, 0, 1])
- local_ob = ob[:, None] - trajectory[:, 0:2]
- local_ob = local_ob.reshape(-1, local_ob.shape[-1])
- local_ob = np.array([local_ob @ x for x in rot])
- local_ob = local_ob.reshape(-1, local_ob.shape[-1])
- upper_check = local_ob[:, 0] <= config.robot_length / 2
- right_check = local_ob[:, 1] <= config.robot_width / 2
- bottom_check = local_ob[:, 0] >= -config.robot_length / 2
- left_check = local_ob[:, 1] >= -config.robot_width / 2
- if (np.logical_and(np.logical_and(upper_check, right_check),
- np.logical_and(bottom_check, left_check))).any():
- return float("Inf")
- elif config.robot_type == RobotType.circle:
- if np.array(r <= config.robot_radius).any():
- return float("Inf")
-
- min_r = np.min(r)
- return 1.0 / min_r # OK
'运行
最终机器人规划避障轨迹:
机器人轨迹规划的基本算法,之后做实验跑一跑!!!之后还要研究下欧几里得距离转换算法(Euclidean Distance Transform, EDT),建立EDT梯度图衡量障碍物代价以优化障碍物判断优化。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。