赞
踩
逻辑回归(logistic回归)即对数几率回归,它虽然被称作“回归”,但却是一种用于二分类的分类方法。逻辑回归是通过分析一个样本被分为各个类的概率比较后得出该样本最有可能属于的类的一种分类方法。
- from sklearn.datasets import load_breast_cancer
- from sklearn.model_selection import train_test_split
- import math
- import numpy as np
- '''定义sigmoid函数'''
- def sigmoid(x):
- if x>0:
- return 1.0/(1.0+np.exp(-x))
- else:
- return np.exp(x)/(1.0+np.exp(x))
-
- class LogisticRegression:
- def __init__(self,learning_rate=0.01,num_iterations=1000):
- self.learning_rate=learning_rate
- self.num_iterations=num_iterations
- self.weights=None
- self.bias=None
-
- def fit(self,X,y,weights,bias=0):
- #num_samples是样本的数量,num_features是样本特征的数量
- num_samples,num_features=X.shape
- self.weights=weights
- self.bias=bias
- for _ in range(self.num_iterations):
- y_pred=[]
- for x in X:
- dot=np.dot(x, self.weights)
- linear_model = dot + self.bias
- y_pred.append(sigmoid(linear_model))
- y_pred=np.array(y_pred)
- dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))
- db = (1 / num_samples) * np.sum(y_pred - y)
- self.weights -= self.learning_rate * dw
- self.bias -= self.learning_rate * db
-
- def predict_prob(self, X):
- y_pred = []
- for x in X:
- dot = np.dot(x, self.weights)
- linear_model = dot + self.bias
- y_pred.append(sigmoid(linear_model))
- y_pred = np.array(y_pred)
- return y_pred
-
- def predict(self, X, threshold=0.5):
- y_pred_prob = self.predict_prob(X)
- y_pred = np.zeros_like(y_pred_prob)
- y_pred[y_pred_prob >= threshold] = 1
- return y_pred
- def calculate_accuracy(self,y_pred,y_test):
- sum=0
- for p,t in zip(y_pred,y_test):
- if p==t:
- sum+=1
- return float(sum)/float(len(y_pred))
-
- if __name__ == "__main__":
- l=LogisticRegression()
- breast_cancer = load_breast_cancer()
- X = breast_cancer.data
- y = breast_cancer.target
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
- num_samples, num_features = X.shape
- #w = np.ones(num_features)
- w = np.zeros(num_features)
- l.fit(X_train,y_train,w)
-
- y_pred=l.predict(X_test)
- print(y_pred)
- print(y_test)
- print("准确率:",l.calculate_accuracy(y_pred,y_test))
-
-
-
-
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。