赞
踩
NVIDIA DLI RAG课程(Course Detail | NVIDIA ),并获得该课程证书。
- embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
- # ChatNVIDIA.get_available_models()
- instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")
大约会在Part3的 Task3出错,否则会早早出错。
运行完 所有cell后,点击下面的绿色的 Link To Gradio Frontend 文字,跳转到我们服务启动的页面
从07/08两个脚本中复制代码出来
从07 Part3复制如下
-
- chat_prompt = ChatPromptTemplate.from_messages([("system",
- "You are a document chatbot. Help the user as they ask questions about documents."
- " User messaged just asked: {input}\n\n"
- " From this, we have retrieved the following potentially-useful info: "
- " Conversation History Retrieval:\n{history}\n\n"
- " Document Retrieval:\n{context}\n\n"
- " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
- ), ('user', '{input}')])
-
-
- embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
08 Part3 Task1 复制如下
- from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
- from langchain_community.vectorstores import FAISS
-
- docstore = FAISS.load_local("docstore_index", embedder, allow_dangerous_deserialization=True)
- docs = list(docstore.docstore._dict.values())
再手写补充如下
-
- add_routes(
- app,
- docstore.as_retriever(),
- path="/retriever",
- )
-
-
- add_routes(
- app,
- chat_prompt | llm,
- path="/generator",
- )
然后将 08 中的问题复制粘贴到 到输入框中,运行即可。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。