当前位置:   article > 正文

NVIDIA Hands-on Lab——Building RAG Agents with LLMs

NVIDIA Hands-on Lab——Building RAG Agents with LLMs

NVIDIA DLI RAG课程(Course Detail | NVIDIA ),并获得该课程证书。

1 07的ipynb文件中设定,使用这两个模型配置

  1. embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
  2. # ChatNVIDIA.get_available_models()
  3. instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")

大约会在Part3的 Task3出错,否则会早早出错。

08不用改

运行完 所有cell后,点击下面的绿色的 Link To Gradio Frontend 文字,跳转到我们服务启动的页面

35的ipynb文件脚本需要修改几处:

从07/08两个脚本中复制代码出来

从07 Part3复制如下

  1. chat_prompt = ChatPromptTemplate.from_messages([("system",
  2. "You are a document chatbot. Help the user as they ask questions about documents."
  3. " User messaged just asked: {input}\n\n"
  4. " From this, we have retrieved the following potentially-useful info: "
  5. " Conversation History Retrieval:\n{history}\n\n"
  6. " Document Retrieval:\n{context}\n\n"
  7. " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
  8. ), ('user', '{input}')])
  9. embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")

08 Part3 Task1 复制如下

  1. from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
  2. from langchain_community.vectorstores import FAISS
  3. docstore = FAISS.load_local("docstore_index", embedder, allow_dangerous_deserialization=True)
  4. docs = list(docstore.docstore._dict.values())

再手写补充如下

  1. add_routes(
  2. app,
  3. docstore.as_retriever(),
  4. path="/retriever",
  5. )
  6. add_routes(
  7. app,
  8. chat_prompt | llm,
  9. path="/generator",
  10. )

然后将 08 中的问题复制粘贴到 到输入框中,运行即可。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/988739
推荐阅读
相关标签
  

闽ICP备14008679号