赞
踩
GooLeNet在2014年由Google团队提出,斩获当年ImageNet竞赛中Classification Task(分类任务)第一名。GoogLeNet在专注于加深网络结构的同时,引入了新的基本结构——Inception模块,在某种意义上更直接的增加了网络的深度。GoogLeNet一共22层,没有全连接层。
AlexNet和VGG都只有一个输出层,GooLeNet有三个输出层(其中两个辅助分类层)
Inception模块的基本组成结构有四个:1x1卷积,3x3卷积,5x5卷积,3x3最大池化。最后再对四个成分运算结果在深度上进行拼接
核心思想:利用不同大小的卷积核实现不同尺度的感知,最后进行融合,可以探索特征图上不同邻域内的“相关性” 。
注意:每个分支所得的特征矩阵高和宽必须相同,否则无法沿深度方向进行拼接
(a)有两个缺点:
(b)改进了:
使用1x1 卷积核主要目的是进行压缩降维(调整输出通道数,即卷积核的个数),减少参数量(Pointwise Convolution(逐点卷积),简称PW卷积)
假设输入通道数为Cin,原本是直接使用输出通道数为Cout的N*N卷积层来进行卷积,那么所需参数量为Cin×N×N×Cout;
如果加上输出通道数为k的1×1卷积核的话,所需参数量为:Cin×k+k×N×N×Cout,只要k足够小就能使参数量大幅度下降了。
因为神经网络的中间层也具有很强的识别能力,因此GoogLeNet中增加了两个辅助的softmax分支。
- 第一层是平均池化下采样操作 ,池化核大小是5×5,步长为3,inception(4a)的辅助分类器输出大小是4×4×512,inception(4d)的辅助分类器的输出大小是4×4×528(有两个辅助分类器,分别在inception(4a)和inception(4d))
- 采用128个1×1的卷积核进行卷积处理,目的是降维,并且使用ReLU激活函数
- 采用节点个数为1024的全连接层,使用ReLU激活函数
- 在全连接层和全连接层之间使用dropout函数,以70%的比例随机失活神经元
- 输出层,节点个数对应着类别个数(1000个),再通过softmax激活函数得到概率分布
作用:
LocalRespNorm层在AlexNet和VGG出现过,作用不大,在搭建过程中可以舍弃
- import torch.nn as nn
- import torch
- import torch.nn.functional as F
-
-
- class GoogLeNet(nn.Module):
- def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
- super(GoogLeNet, self).__init__()
- self.aux_logits = aux_logits
-
- self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
- self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
-
- self.conv2 = BasicConv2d(64, 64, kernel_size=1)
- self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
- self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
-
- self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
- self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
- self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
-
- self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
- self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
- self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
- self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
- self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
- self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
-
- self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
- self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
-
- if self.aux_logits:
- self.aux1 = InceptionAux(512, num_classes)
- self.aux2 = InceptionAux(528, num_classes)
-
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.dropout = nn.Dropout(0.4)
- self.fc = nn.Linear(1024, num_classes)
- if init_weights:
- self._initialize_weights()
-
- def forward(self, x):
- # N x 3 x 224 x 224
- x = self.conv1(x)
- # N x 64 x 112 x 112
- x = self.maxpool1(x)
- # N x 64 x 56 x 56
- x = self.conv2(x)
- # N x 64 x 56 x 56
- x = self.conv3(x)
- # N x 192 x 56 x 56
- x = self.maxpool2(x)
-
- # N x 192 x 28 x 28
- x = self.inception3a(x)
- # N x 256 x 28 x 28
- x = self.inception3b(x)
- # N x 480 x 28 x 28
- x = self.maxpool3(x)
- # N x 480 x 14 x 14
- x = self.inception4a(x)
- # N x 512 x 14 x 14
- if self.training and self.aux_logits: # eval model lose this layer
- aux1 = self.aux1(x)
-
- x = self.inception4b(x)
- # N x 512 x 14 x 14
- x = self.inception4c(x)
- # N x 512 x 14 x 14
- x = self.inception4d(x)
- # N x 528 x 14 x 14
- if self.training and self.aux_logits: # eval model lose this layer
- aux2 = self.aux2(x)
-
- x = self.inception4e(x)
- # N x 832 x 14 x 14
- x = self.maxpool4(x)
- # N x 832 x 7 x 7
- x = self.inception5a(x)
- # N x 832 x 7 x 7
- x = self.inception5b(x)
- # N x 1024 x 7 x 7
-
- x = self.avgpool(x)
- # N x 1024 x 1 x 1
- x = torch.flatten(x, 1)
- # N x 1024
- x = self.dropout(x)
- x = self.fc(x)
- # N x 1000 (num_classes)
- if self.training and self.aux_logits: # eval model lose this layer
- return x, aux2, aux1
- return x
-
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.constant_(m.bias, 0)
-
-
- class Inception(nn.Module):
- def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
- super(Inception, self).__init__()
-
- self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
-
- self.branch2 = nn.Sequential(
- BasicConv2d(in_channels, ch3x3red, kernel_size=1),
- BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) # padding=1保证输出大小等于输入大小
- )
-
- self.branch3 = nn.Sequential(
- BasicConv2d(in_channels, ch5x5red, kernel_size=1),
- # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
- # Please see https://github.com/pytorch/vision/issues/906 for details.
- BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2) # 保证输出大小等于输入大小
- )
-
- self.branch4 = nn.Sequential(
- nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
- BasicConv2d(in_channels, pool_proj, kernel_size=1)
- )
-
- def forward(self, x):
- branch1 = self.branch1(x)
- branch2 = self.branch2(x)
- branch3 = self.branch3(x)
- branch4 = self.branch4(x)
-
- outputs = [branch1, branch2, branch3, branch4]
- return torch.cat(outputs, 1)
-
-
- # 辅助分类器
- class InceptionAux(nn.Module):
- def __init__(self, in_channels, num_classes):
- super(InceptionAux, self).__init__()
- self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
- self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]
-
- self.fc1 = nn.Linear(2048, 1024)
- self.fc2 = nn.Linear(1024, num_classes)
-
- def forward(self, x):
- # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
- x = self.averagePool(x)
- # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
- x = self.conv(x)
- # N x 128 x 4 x 4
- x = torch.flatten(x, 1)
- x = F.dropout(x, 0.5, training=self.training)
- # N x 2048
- x = F.relu(self.fc1(x), inplace=True)
- x = F.dropout(x, 0.5, training=self.training)
- # N x 1024
- x = self.fc2(x)
- # N x num_classes
- return x
-
-
- class BasicConv2d(nn.Module):
- def __init__(self, in_channels, out_channels, **kwargs):
- super(BasicConv2d, self).__init__()
- self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
- self.relu = nn.ReLU(inplace=True)
-
- def forward(self, x):
- x = self.conv(x)
- x = self.relu(x)
- return x

- x1 = torch.tensor([[11,21,31],[21,31,41]],dtype=torch.int)
- x1.shape # torch.Size([2, 3])
-
- x2 = torch.tensor([[12,22,32],[22,32,42]],dtype=torch.int)
- x2.shape # torch.Size([2, 3])
-
- inputs = [x1, x2]
- print(inputs)
- '打印查看'
- [tensor([[11, 21, 31],
- [21, 31, 41]], dtype=torch.int32),
- tensor([[12, 22, 32],
- [22, 32, 42]], dtype=torch.int32)]
-
-
- In [1]: torch.cat(inputs, dim=0).shape
- Out[1]: torch.Size([4, 3])
-
- In [2]: torch.cat(inputs, dim=1).shape
- Out[2]: torch.Size([2, 6])
-
- In [3]: torch.cat(inputs, dim=2).shape
- IndexError: Dimension out of range (expected to be in range of [-2, 1], but got 2)

- import os
- import sys
- import json
-
- import torch
- import torch.nn as nn
- from torchvision import transforms, datasets
- import torch.optim as optim
- from tqdm import tqdm
-
- from model import GoogLeNet
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print("using {} device.".format(device))
-
- data_transform = {
- "train": transforms.Compose([transforms.RandomResizedCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
- "val": transforms.Compose([transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
-
- data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
- image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
- assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
- train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
- transform=data_transform["train"])
- train_num = len(train_dataset)
-
- # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
- flower_list = train_dataset.class_to_idx
- cla_dict = dict((val, key) for key, val in flower_list.items())
- # write dict into json file
- json_str = json.dumps(cla_dict, indent=4)
- with open('class_indices.json', 'w') as json_file:
- json_file.write(json_str)
-
- batch_size = 32
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
- print('Using {} dataloader workers every process'.format(nw))
-
- train_loader = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size, shuffle=True,
- num_workers=nw)
-
- validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
- transform=data_transform["val"])
- val_num = len(validate_dataset)
- validate_loader = torch.utils.data.DataLoader(validate_dataset,
- batch_size=batch_size, shuffle=False,
- num_workers=nw)
-
- print("using {} images for training, {} images for validation.".format(train_num,
- val_num))
-
- # test_data_iter = iter(validate_loader)
- # test_image, test_label = test_data_iter.next()
-
- net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
- # 如果要使用官方的预训练权重,注意是将权重载入官方的模型,不是我们自己实现的模型
- # 官方的模型中使用了bn层以及改了一些参数,不能混用
- # import torchvision
- # net = torchvision.models.googlenet(num_classes=5)
- # model_dict = net.state_dict()
- # # 预训练权重下载地址: https://download.pytorch.org/models/googlenet-1378be20.pth
- # pretrain_model = torch.load("googlenet.pth")
- # del_list = ["aux1.fc2.weight", "aux1.fc2.bias",
- # "aux2.fc2.weight", "aux2.fc2.bias",
- # "fc.weight", "fc.bias"]
- # pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}
- # model_dict.update(pretrain_dict)
- # net.load_state_dict(model_dict)
- net.to(device)
- loss_function = nn.CrossEntropyLoss()
- optimizer = optim.Adam(net.parameters(), lr=0.0003)
-
- epochs = 30
- best_acc = 0.0
- save_path = './googleNet.pth'
- train_steps = len(train_loader)
- for epoch in range(epochs):
- # train
- net.train()
- running_loss = 0.0
- train_bar = tqdm(train_loader, file=sys.stdout)
- for step, data in enumerate(train_bar):
- images, labels = data
- optimizer.zero_grad()
- logits, aux_logits2, aux_logits1 = net(images.to(device))
- loss0 = loss_function(logits, labels.to(device))
- loss1 = loss_function(aux_logits1, labels.to(device))
- loss2 = loss_function(aux_logits2, labels.to(device))
- loss = loss0 + loss1 * 0.3 + loss2 * 0.3
- loss.backward()
- optimizer.step()
-
- # print statistics
- running_loss += loss.item()
-
- train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
- epochs,
- loss)
-
- # validate
- net.eval()
- acc = 0.0 # accumulate accurate number / epoch
- with torch.no_grad():
- val_bar = tqdm(validate_loader, file=sys.stdout)
- for val_data in val_bar:
- val_images, val_labels = val_data
- outputs = net(val_images.to(device)) # eval model only have last output layer
- predict_y = torch.max(outputs, dim=1)[1]
- acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
-
- val_accurate = acc / val_num
- print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
- (epoch + 1, running_loss / train_steps, val_accurate))
-
- if val_accurate > best_acc:
- best_acc = val_accurate
- torch.save(net.state_dict(), save_path)
-
- print('Finished Training')
-
-
- if __name__ == '__main__':
- main()

训练比较漫长,霹雳吧啦训练最好的结果达到了86.3%(迭代了30epoch)
- import os
- import json
-
- import torch
- from PIL import Image
- from torchvision import transforms
- import matplotlib.pyplot as plt
-
- from model import GoogLeNet
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- data_transform = transforms.Compose(
- [transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
-
- # load image
- img_path = "tulip.jpg"
- assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
- img = Image.open(img_path)
- plt.imshow(img)
- # [N, C, H, W]
- img = data_transform(img)
- # expand batch dimension
- img = torch.unsqueeze(img, dim=0)
-
- # read class_indict
- json_path = './class_indices.json'
- assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
-
- with open(json_path, "r") as f:
- class_indict = json.load(f)
-
- # create model
- model = GoogLeNet(num_classes=5, aux_logits=False).to(device)
-
- # load model weights
- weights_path = "./googleNet.pth"
- assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
- missing_keys, unexpected_keys = model.load_state_dict(torch.load(weights_path, map_location=device),
- strict=False)
-
- model.eval()
- with torch.no_grad():
- # predict class
- output = torch.squeeze(model(img.to(device))).cpu()
- predict = torch.softmax(output, dim=0)
- predict_cla = torch.argmax(predict).numpy()
-
- print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
- predict[predict_cla].numpy())
- plt.title(print_res)
- for i in range(len(predict)):
- print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
- predict[i].numpy()))
- plt.show()
-
-
- if __name__ == '__main__':
- main()

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。