赞
踩
heapq内置模块位于./Anaconda3/Lib/heapq.py,提供基于堆的优先排序算法.
堆的逻辑结构就是完全二叉树,并且二叉树中父节点的值小于等于该节点的所有子节点的值。这种实现可以使用 heap[k] <= heap[2k+1] 并且 heap[k] <= heap[2k+2] (其中 k 为索引,从 0 开始计数)的形式体现,对于堆来说,最小元素即为根元素 heap[0]。
注:python的这个模块默认是小顶堆。
这个heapq是一个内置方法,所谓内置方法是指,它独立于对象,即不是某一个对象的方法。
heap = []
heapq.heappush(heap, item)
其中heap可以是初始化的一个堆(本身可以用一个空的列表),item是每次入堆的元素。因此还要结合循环使用。
heapq.heappop(heap):返回 root 节点,即 当前heap 中最小的元素。
Example:
#1. c初始化一个堆
import heapq
heap = []
myarray = [2,1,5,4,3]
for item in myarray:
heapq.heappush(heap,item)
print(len(heap))
print(heapq.heappop(heap))
print(len(heap))
output:
5
1
4
print([heapq.heappop(heap) for i in range(len(heap))])
[1, 2, 3, 4, 5]
结合上面测试可以简单写出堆排序:
def heapsort(myarray):
heap = []
for item in myarray:
heapq.heappush(heap,item)
return [heapq.heappop(heap) for i in range(len(myarray))]
#或者return [heapq.heappop(heap) for i in range(len(myarray))]
lis = [2,1,5,4,3]
print(heapsort(lis))
[1, 2, 3, 4, 5]
其他方法:
heapq.heapreplace(heap,item): python3中heappushpop的更高效版。
heapq.heappushpop(heap, item):向 heap 中加入 item 元素,并返回 heap 中最小元素。
heapq.heapify(x):将一个列表就地(in-place)时间复杂度 O(len(x))
heapq.nlargest(n, iterable, key=None):返回可枚举对象中的 n 个最大值,并返回一个结果集 list,key 为对该结果集的操作。
heapq.nsmallest(n, iterable, key=None):同上相反
#method: use key to find price_min
portfolio = [{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}]
cheap = heapq.nsmallest(3, portfolio, key=lambda s:s['price'])
print(cheap)
[{'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}]
23. Merge k Sorted Lists
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example:
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6
参考代码:
以下代码python可以解释通过,但是python3对heapq.heappush(heap, (node.val, node))不通过。
import heapq # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def mergeKLists(self, lists): """ :type lists: List[ListNode] :rtype: ListNode """ heap = [] for node in lists: if node: #此处默认是按照元祖(node.val, node)上的第一个位置即node.val进行比较排序 heapq.heappush(heap, (node.val, node)) temp = ListNode(-1) head = temp while heap: smallestNode = heapq.heappop(heap)[1] temp.next = smallestNode temp = temp.next if smallestNode.next: heapq.heappush(heap, (smallestNode.next.val, smallestNode.next)) return head.next
#将小元素上调,大元素下沉
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
print((2,3)<(3,2))
print((3,2)<(2,3))
True
False
python 中的小于号,如果比较的是一个元组那么默认按照第一个位置进行比较
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。