赞
踩
作者:Derrick Harris,Matt Bornstein,Guido Appenzeller
Research in artificial intelligence is increasing at an exponential rate. It’s difficult for AI experts to keep up with everything new being published, and even harder for beginners to know where to start.
人工智能的研究正以指数级的速度增长。人工智能专家很难跟上所有新发布的内容,初学者更难知道从哪里开始。
So, in this post, we’re sharing a curated list of resources we’ve relied on to get smarter about modern AI. We call it the “AI Canon” because these papers, blog posts, courses, and guides have had an outsized impact on the field over the past several years.
所以,在这篇文章中,我们分享了一个精选的资源列表,我们依靠这些资源来更聪明地了解现代AI。我们称之为“AI佳能”,因为这些论文,博客文章,课程和指南在过去几年中对该领域产生了巨大的影响。
We start with a gentle introduction to transformer and latent diffusion models, which are fueling the current AI wave. Next, we go deep on technical learning resources; practical guides to building with large language models (LLMs); and analysis of the AI market.
Finally, we include a reference list of landmark research results, starting with “Attention is All You Need” — the 2017 paper by Google that introduced the world to transformer models and ushered in the age of generative AI.
最后,我们包括一个具有里程碑意义的研究成果的参考列表,从“注意力是你所需要的一切”开始-谷歌2017年的论文,该论文向世界介绍了变压器模型,并迎来了生成式人工智能的时代。
首先,我们将温和地介绍变压器和潜在扩散模型,这些模型正在推动当前的AI浪潮。接下来,我们深入技术学习资源;使用大型语言模型(LLM)构建的实用指南;分析AI市场。
These articles require no specialized background and can help you get up to speed quickly on the most important parts of the modern AI wave.
这些文章不需要专业背景,可以帮助您快速了解现代AI浪潮中最重要的部分。
These resources provide a base understanding of fundamental ideas in machine learning and AI, from the basics of deep learning to university-level courses from AI experts.
这些资源提供了对机器学习和人工智能基本思想的基本理解,从深度学习的基础知识到人工智能专家的大学课程。
There are countless resources — some better than others — attempting to explain how LLMs work. Here are some of our favorites, targeting a wide range of readers/viewers.
有无数的资源-一些比其他的更好-试图解释LLM是如何工作的。以下是我们的一些最爱,针对广泛的读者/观众。
A new application stack is emerging with LLMs at the core. While there isn’t a lot of formal education available on this topic yet, we pulled out some of the most useful resources we’ve found.
一个新的应用程序堆栈正在以LLM为核心出现。虽然还没有很多关于这个主题的正规教育,但我们找到了一些最有用的资源。
We’ve all marveled at what generative AI can produce, but there are still a lot of questions about what it all means. Which products and companies will survive and thrive? What happens to artists? How should companies use it? How will it affect literally jobs and society at large? Here are some attempts at answering these questions.
我们都对生成式人工智能能产生什么感到惊讶,但关于这一切意味着什么,仍然有很多问题。哪些产品和公司将生存和发展?艺术家怎么了?企业应该如何使用它?它将如何影响就业和整个社会?以下是一些回答这些问题的尝试。
Most of the amazing AI products we see today are the result of no-less-amazing research, carried out by experts inside large companies and leading universities.
我们今天看到的大多数令人惊叹的人工智能产品都是由大公司和一流大学的专家进行的惊人研究的结果。
Lately, we’ve also seen impressive work from individuals and the open source community taking popular projects into new directions, for example by creating automated agents or porting models onto smaller hardware footprints.
最近,我们也看到了来自个人和开源社区的令人印象深刻的工作,将流行的项目带入新的方向,例如通过创建自动化代理或将模型移植到较小的硬件足迹上。
Here’s a collection of many of these papers and projects, for folks who really want to dive deep into generative AI.
这里收集了许多这样的论文和项目,适合那些真正想要深入研究生成式AI的人。
(For research papers and projects, we’ve also included links to the accompanying blog posts or websites, where available, which tend to explain things at a higher level. And we’ve included original publication years so you can track foundational research over time.)
(For除了研究论文和项目外,我们还提供了相应的博客文章或网站的链接,这些链接往往会在更高的层次上解释事情。我们还包括原始出版年份,以便您可以跟踪基础研究的时间。
New models
Model improvements (e.g. fine-tuning, retrieval, attention)
模型改进(例如微调、检索、注意)
Code generation
Video generation
Human biology and medical data 人体生物学和医学数据
Audio generation
Multi-dimensional image generation
多维图像生成
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。