赞
踩
自编码器 (Autoencoder
) 是一种无监督学习的神经网络模型,用于数据的特征提取和降维,它由一个编码器 (Encoder
) 和一个解码器 (Decoder
) 组成,通过将输入数据压缩到低维表示,然后再重构出原始数据。在本节中,我们将学习如何使用自编码器,以在低维空间表示图像,学习以较少的维度表示图像有助于修改图像,可以利用低维表示来生成新图像。
我们已经学习了通过输入图像及其相应标签训练模型来对图像进行分类,进行分类的前提是是拥有带有类别标签的数据集。假设数据集中没有图像对应的标签,如果需要根据图像的相似性对图像进行聚类,在这种情况下,自编码器可以方便地识别和分组相似的图像。
自动编码器将图像作为输入,将其存储在低维空间中,并尝试通过解码过程输出相同图像,而不使用其他标签,因此 AutoEncoder
中的 Auto
表示能够再现输入。但是,如果我们只需要简单的在输出中重现输入,就不需要神经网络了,只需要将输入简单地原样输出即可。自编码器的作用在于它能够以较低维度对图像信息进行编码,因此称为编码器(将图像信息编码至较低维空间中),因此,相似的图像具有相似的编码。此外,解码器致力于根据编码矢量重建原始图像,以尽可能重现输入图像:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。