赞
踩
− Δ u = f in Ω , u = g on Γ : = ∂ Ω . −Δu=fin Ω,u=gon Γ:=∂Ω. −Δuu=f=gin Ω,on Γ:=∂Ω.
其中 Ω = [ X a , X b ] × [ Y a , Y b ] \Omega = [X_a,X_b]\times[Y_a,Y_b] Ω=[Xa,Xb]×[Ya,Yb] 是一个二维矩形区域, Δ u = u x x + u y y , g \Delta u = u_{xx}+u_{yy}, g Δu=uxx+uyy,g 是边界条件给定的函数,可以非零.
二维PINN 与一维的整体框架是类似的,只是数据的维度升高了,为了读者方便这里直接展示完整代码,每段代码都添加了注释帮助理解:
检查 TF 版本号:
# PINN 求解 2D Poisson 方程
import tensorflow as tf
print(tf.__version__)
主要函数:
import os #tensorflow-intel automatically set the TF_ENABLE_ONEDNN_OPTS=1 #os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Here, TF_ENABLE_ONEDNN_OPTS=0 should be above import tensorflow as tf import tensorflow as tf import numpy as np import time import matplotlib.pyplot as plt import scipy.io import math # 定义数据集类,用于生成训练所需的数据 class Dataset: def __init__(self, x_range, y_range, N_res, N_bx, N_by, Nx, Ny, xa, xb, ya, yb): self.x_range = x_range # x 轴范围 self.y_range = y_range # y 轴范围 self.N_res = N_res # 方程残差点数量 self.N_bx = N_bx # x 方向边界条件点数量 self.N_by = N_by # y 方向边界条件点数量 self.Nx = Nx # x 方向网格数量 self.Ny = Ny # y 方向网格数量 self.xa = xa # x 方向左边界 self.xb = xb # x 方向右边界 self.ya = ya # y 方向下边界 self.yb = yb # y 方向上边界 # 定义边界条件函数 # 可以求解非齐次 Dirichlet 边界条件 def bc(self, X_b): U_bc = Exact(self.xa, self.xb, self.ya, self.yb) u_bc = U_bc.u_exact(X_b) return u_bc # 生成数据:残差点和边界条件点 def build_data(self): x0, x1 = self.x_range y0, y1 = self.y_range Xmin = np.hstack((x0, y0)) Xmax = np.hstack((x1, y1)) ## 如果使用均匀网格,代码如下: """ x_ = np.linspace(x0, x1, self.Nx).reshape((-1, 1)) y_ = np.linspace(y0, y1, self.Ny).reshape((-1, 1)) x, y = np.meshgrid(x_, y_) x = np.reshape(x, (-1, 1)) y = np.reshape(y, (-1, 1)) xy = np.hstack((x, y)) X_res_input = xy """ ## 为方程生成随机残差点 x_res = x0 + (x1 - x0) * np.random.rand(self.N_res, 1) y_res = y0 + (y1 - y0) * np.random.rand(self.N_res, 1) X_res_input = np.hstack((x_res, y_res)) # 生成 x = xa, xb 的边界条件点 y_b = y0 + (y1 - y0) * np.random.rand(self.N_by, 1) x_b0 = x0 * np.ones_like(y_b) x_b1 = x1 * np.ones_like(y_b) X_b0_input = np.hstack((x_b0, y_b)) X_b1_input = np.hstack((x_b1, y_b)) # 生成 y = ya, yb 的边界条件点 x_b = x0 + (x1 - x0) * np.random.rand(self.N_bx, 1) y_b0 = y0 * np.ones_like(x_b) y_b1 = y1 * np.ones_like(x_b) Y_b0_input = np.hstack((x_b, y_b0)) Y_b1_input = np.hstack((x_b, y_b1)) return X_res_input, X_b0_input, X_b1_input, Y_b0_input, Y_b1_input, Xmin, Xmax # 定义精确解类,用于计算精确解 class Exact: def __init__(self, xa, xb, ya, yb): self.xa = xa # x 方向左边界 self.xb = xb # x 方向右边界 self.ya = ya # y 方向下边界 self.yb = yb # y 方向上边界 # 精确解函数 def u_exact(self, X): x = X[:, 0:1] y = X[:, 1:2] u = np.sin(2 * np.pi * x ) * np.sin(2 * np.pi * y ) return u class Train: def __init__(self, train_dict): self.train_dict = train_dict # 训练数据 self.step = 0 # 训练步数 # 打印训练损失 def callback(self, loss_value): self.step += 1 if self.step % 200 == 0: print(f'Loss: {loss_value:.4e}') # 使用 Adam 和 L-BFGS 优化器进行训练 def nntrain(self, sess, u_pred, loss, train_adam, train_lbfgs): n = 0 max_steps = 1000 loss_threshold = 4.0e-4 current_loss = 1.0 while n < max_steps and current_loss > loss_threshold: n += 1 u_, current_loss, _ = sess.run([u_pred, loss, train_adam], feed_dict=self.train_dict) # 每2^n步打印一次损失并绘制结果 if math.isclose(math.fmod(math.log2(n), 1), 0, abs_tol=1e-9): print(f'Steps: {n}, loss: {current_loss:.4e}') train_lbfgs.minimize(sess, feed_dict=self.train_dict, fetches=[loss], loss_callback=self.callback) class DNN: def __init__(self, layer_sizes, Xmin, Xmax): self.layer_sizes = layer_sizes # 每层的节点数 self.Xmin = Xmin # 输入范围最小值 self.Xmax = Xmax # 输入范围最大值 # 初始化神经网络的权重和偏置 def hyper_initial(self): num_layers = len(self.layer_sizes) weights = [] biases = [] for l in range(1, num_layers): in_dim = self.layer_sizes[l-1] out_dim = self.layer_sizes[l] std = np.sqrt(2 / (in_dim + out_dim)) weight = tf.Variable(tf.random_normal(shape=[in_dim, out_dim], stddev=std)) bias = tf.Variable(tf.zeros(shape=[1, out_dim])) weights.append(weight) biases.append(bias) return weights, biases # 构建前馈神经网络 def fnn(self, X, weights, biases): A = 2.0 * (X - self.Xmin) / (self.Xmax - self.Xmin) - 1.0 # 归一化输入 num_layers = len(weights) for i in range(num_layers - 1): A = tf.tanh(tf.add(tf.matmul(A, weights[i]), biases[i])) # 隐藏层激活函数 Y = tf.add(tf.matmul(A, weights[-1]), biases[-1]) # 输出层 return Y # 构建用于求解 Poisson 方程的神经网络 def pdenn(self, x, y, weights, biases): u = self.fnn(tf.concat([x, y], 1), weights, biases) # 前馈网络输出 u_x = tf.gradients(u, x)[0] # u 对 x 的一阶导数 u_xx = tf.gradients(u_x, x)[0] # u 对 x 的二阶导数 u_y = tf.gradients(u, y)[0] # u 对 y 的一阶导数 u_yy = tf.gradients(u_y, y)[0] # u 对 y 的二阶导数 # 源项函数 rhs_func = 8 * np.pi**2 * tf.sin(2 * np.pi * x ) * tf.sin(2 * np.pi * y ) # 残差项 residual = -(u_xx + u_yy) - rhs_func return residual def compute_errors(u_pred, u_exact): """ 计算数值解与精确解之间的 L2 误差和最大模误差 :param u_pred: 数值解 :param u_exact: 精确解 :return: L2 误差和最大模误差 """ # 计算 L2 误差 L2_error = np.sqrt(np.mean((u_pred - u_exact) ** 2)) # 计算最大模误差 max_error = np.max(np.abs(u_pred - u_exact)) return L2_error, max_error
画图以及保存图片:
# 检查保存路径是否存在,如果不存在则创建 save_path = './Output' if not os.path.exists(save_path): os.makedirs(save_path) # 定义保存和绘图类 class SavePlot: def __init__(self, session, x_range, y_range, num_x_points, num_y_points, xa, xb, ya, yb): self.x_range = x_range # x 轴范围 self.y_range = y_range # y 轴范围 self.num_x_points = num_x_points # x 方向上的测试点数量 self.num_y_points = num_y_points # y 方向上的测试点数量 self.session = session # TensorFlow 会话 self.xa = xa # x 方向左边界 self.xb = xb # x 方向右边界 self.ya = ya # y 方向下边界 self.yb = yb # y 方向上边界 # 保存并绘制预测和精确解 def save_and_plot(self, u_pred, x_res_train, y_res_train): # 生成测试点 x_test = np.linspace(self.x_range[0], self.x_range[1], self.num_x_points).reshape((-1, 1)) y_test = np.linspace(self.y_range[0], self.y_range[1], self.num_y_points).reshape((-1, 1)) x_test_grid, y_test_grid = np.meshgrid(x_test, y_test) x_test_grid = np.reshape(x_test_grid, (-1, 1)) y_test_grid = np.reshape(y_test_grid, (-1, 1)) # 创建测试字典 test_feed_dict = {x_res_train: x_test_grid, y_res_train: y_test_grid} # 在测试网格上进行预测 u_test = self.session.run(u_pred, feed_dict=test_feed_dict) u_test = np.reshape(u_test, (y_test.shape[0], x_test.shape[0])) u_test = np.transpose(u_test) # 保存预测结果到文件 np.savetxt(os.path.join(save_path, 'u_pred.txt'), u_test, fmt='%e') # 绘制预测结果并保存图片 plt.imshow(u_test, cmap='rainbow', aspect='auto') plt.colorbar() plt.title('Numerical Solution') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.savefig(os.path.join(save_path, 'u_pred.png')) plt.show() plt.close() # 计算并保存精确解 exact_solution = Exact(self.xa, self.xb, self.ya, self.yb) u_exact = exact_solution.u_exact(np.hstack((x_test_grid, y_test_grid))) u_exact = np.reshape(u_exact, (y_test.shape[0], x_test.shape[0])) u_exact = np.transpose(u_exact) np.savetxt(os.path.join(save_path, 'u_exact.txt'), u_exact, fmt='%e') # 绘制精确解并保存图片 plt.imshow(u_exact, cmap='rainbow', aspect='auto') plt.colorbar() plt.title('Exact Solution') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.savefig(os.path.join(save_path, 'u_exact.png')) plt.show() plt.close()
下面是主程序:
import os import tensorflow as tf import numpy as np import time import matplotlib.pyplot as plt # 设置随机种子以确保可重复性 np.random.seed(1234) tf.set_random_seed(1234) def main(): # 定义计算域范围 x_range = [-0.5, 1.5] y_range = [-1.0, 1.0] # 网格点数量 num_x_points = 101 num_y_points = 101 # 残差点和边界点数量 num_residual_points = 8000 num_boundary_x_points = 100 num_boundary_y_points = 100 # 边界范围 xa = x_range[0] xb = x_range[1] ya = y_range[0] yb = y_range[1] # 创建数据集对象 data = Dataset(x_range, y_range, num_residual_points, num_boundary_x_points, num_boundary_y_points, num_x_points, num_y_points, xa, xb, ya, yb) # 生成数据 X_res, X_b0, X_b1, Y_b0, Y_b1, Xmin, Xmax = data.build_data() # 定义神经网络的层结构 layers = [2] + 5 * [40] + [1] # 定义输入占位符 x_res_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_res_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) X_x_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) X_y_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) X_x_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) X_y_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) Y_x_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) Y_y_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) Y_x_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) Y_y_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32) # 创建物理信息神经网络(PINN) pinn = DNN(layers, Xmin, Xmax) weights, biases = pinn.hyper_initial() # 预测解 u_pred = pinn.fnn(tf.concat([x_res_train, y_res_train], 1), weights, biases) # 计算残差 f_pred = pinn.pdenn(x_res_train, y_res_train, weights, biases) # 边界条件预测 (x = xa, xb) u_x_b0_pred = pinn.fnn(tf.concat([X_x_b0_train, X_y_b0_train], 1), weights, biases) u_x_b1_pred = pinn.fnn(tf.concat([X_x_b1_train, X_y_b1_train], 1), weights, biases) # 边界条件预测 (y = ya, yb) u_y_b0_pred = pinn.fnn(tf.concat([Y_x_b0_train, Y_y_b0_train], 1), weights, biases) u_y_b1_pred = pinn.fnn(tf.concat([Y_x_b1_train, Y_y_b1_train], 1), weights, biases) # 定义损失函数 loss = 0.1 * tf.reduce_mean(tf.square(f_pred)) + \ tf.reduce_mean(tf.square(u_x_b0_pred)) + \ tf.reduce_mean(tf.square(u_x_b1_pred)) + \ tf.reduce_mean(tf.square(u_y_b0_pred)) + \ tf.reduce_mean(tf.square(u_y_b1_pred)) # 定义优化器 train_adam = tf.train.AdamOptimizer(0.0008).minimize(loss) train_lbfgs = tf.contrib.opt.ScipyOptimizerInterface(loss, method="L-BFGS-B", options={'maxiter': 10000 , 'ftol': 1.0 * np.finfo(float).eps}) # 创建 TensorFlow 会话 session = tf.Session() session.run(tf.global_variables_initializer()) # 创建训练字典 train_feed_dict = {x_res_train: X_res[:, 0:1], y_res_train: X_res[:, 1:2], X_x_b0_train: X_b0[:, 0:1], X_y_b0_train: X_b0[:, 1:2], X_x_b1_train: X_b1[:, 0:1], X_y_b1_train: X_b1[:, 1:2], Y_x_b0_train: Y_b0[:, 0:1], Y_y_b0_train: Y_b0[:, 1:2], Y_x_b1_train: Y_b1[:, 0:1], Y_y_b1_train: Y_b1[:, 1:2]} # 创建训练模型 model = Train(train_feed_dict) # 记录训练时间 start_time = time.perf_counter() model.nntrain(session, u_pred, loss, train_adam, train_lbfgs) stop_time = time.perf_counter() print('训练时间为 %.3f 秒' % (stop_time - start_time)) # 保存预测数据和图像 num_test_x_points = 101 num_test_y_points = 101 data_saver = SavePlot(session, x_range, y_range, num_test_x_points, num_test_y_points, xa, xb, ya, yb) data_saver.save_and_plot(u_pred, x_res_train, y_res_train) # 计算误差 x_test = np.linspace(x_range[0], x_range[1], num_test_x_points).reshape((-1, 1)) y_test = np.linspace(y_range[0], y_range[1], num_test_y_points).reshape((-1, 1)) x_t, y_t = np.meshgrid(x_test, y_test) x_t = np.reshape(x_t, (-1, 1)) y_t = np.reshape(y_t, (-1, 1)) test_dict = {x_res_train: x_t, y_res_train: y_t} u_test_pred = session.run(u_pred, feed_dict=test_dict) # 预测在均匀网格上的解 Exact_sln = Exact(xa, xb, ya, yb) u_test_exact = Exact_sln.u_exact(np.hstack((x_t, y_t))) # 计算误差 L2_error, max_error = compute_errors(u_test_pred, u_test_exact) print('L2 Error: %.6e' % L2_error) print('Max Error: %.7e' % max_error) if __name__ == '__main__': main()
程序中已经写好了详细的注释,关于优化器与 TF 会话(session) 的相关知识请各位移步 TensorFlow 优化器使用。另外建议读者对比阅读我之前总结的一维PINN 算法的实现 ,理解一维二维的本质不同,更高维的 PDE 求解也就不在话下了。
效果不错!
-----------------------------------------------------------------------------------------------
本专栏目标从简单的一维 Poisson 方程,到对流扩散方程,Burges 方程,到二维,三维以及非线性方程,发展方程,积分方程等等,所有文章包含全部可运行代码。请持续关注!
作者 :计算小屋
个人主页 : 计算小屋的主页
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。