当前位置:   article > 正文

使用torch_pruning对YOLOv8进行剪枝(新版、detect、segment)

使用torch_pruning对YOLOv8进行剪枝(新版、detect、segment)

torch_pruning库介绍

group原理
在结构修剪中,**Group被定义为深度网络中最小的可移除单元。**每个组由多个相互依赖的层组成,需要同时修剪这些层以保持最终结构的完整性。然而,深度网络通常表现出层与层之间错综复杂的依赖关系,这对结构修剪提出了重大挑战。这项研究通过引入DepGraph轻松实现参数分组,并有助于修剪各种深度网络。

如修剪图中高亮的神经元,我们需要对所有有连线的层都进行修剪。(a) W_l、W_l+1 (b) W_l、W_l+1、W_l+2 © W_l、W_l+1、W_l+2 (d) W_l

一个简单的例子

我们修剪resnet18,把其第一个卷积的输出通道维度减少3。

import torch
from torchvision.models import resnet18
import torch_pruning as tp

model = resnet18(pretrained=True).eval()
print(model)
# 1. build dependency graph for resnet18
DG = tp.DependencyGraph().build_dependency(model, example_inputs=torch.randn(1,3,224,224))

# 2. Specify the to-be-pruned channels. Here we prune those channels indexed by [2, 6, 9].
group = DG.get_pruning_group( model.conv1, tp.prune_conv_out_channels, idxs=[2, 6, 9] )
print(group)
# 3. prune all grouped layers that are coupled with model.conv1 (included).
if DG.check_pruning_group(group): # avoid full pruning, i.e., len(channels)=0.
    group.prune()
    
print(model)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

剪枝结果1
跟conv1相关的层都被修剪了,剪的是第2,6,9维,但这种方式不给灵活,只能修剪固定的索引,下面我实现更灵活的方式。
下面我们对整个resnet18剪枝,使其通道数减半,ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
这里需要我们做两件事,第一,重要性函数,抽象的说就是评估每个组的重要性,不重要的就可以修剪掉,可以使用内置重要性函数,也可以自定义。第二,配置剪枝器,如使用剪枝多少步,最后的稀疏性是多少,这里我们设置稀疏性是0.5。

import torch
from torchvision.models import resnet18
import torch_pruning as tp

model = resnet18(pretrained=True)

# Importance criteria
example_inputs = torch.randn(1, 3, 224, 224)
imp = tp.importance.TaylorImportance()

ignored_layers = []
for m in model.modules():
    if isinstance(m, torch.nn.Linear) and m.out_features == 1000:
        ignored_layers.append(m) # DO NOT prune the final classifier!

iterative_steps = 5 # progressive pruning
pruner = tp.pruner.MagnitudePruner(
    model,
    example_inputs,
    importance=imp,
    iterative_steps=iterative_steps,
    ch_sparsity=0.5, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
    ignored_layers=ignored_layers,
)

base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
print(f"Before Pruning: MACs={base_macs / 1e9: .5f} G, #Params={base_nparams / 1e6: .5f} M")
for i in range(iterative_steps):
    if isinstance(imp, tp.importance.TaylorImportance):
        # Taylor expansion requires gradients for importance estimation
        loss = model(example_inputs).sum() # a dummy loss for TaylorImportance
        loss.backward() # before pruner.step()
    pruner.step()
    macs, nparams = tp.utils.count_ops_and_params(model, example_inputs)
    print(f"{i+1}/{iterative_steps} Pruning: MACs={macs / 1e9: .5f} G, #Params={nparams / 1e6: .5f} M")
    # finetune your model here
    # finetune(model),model.train()
    # ...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

剪枝结果2

在YOLOv8中剪枝

通过上面的步骤,发现剪枝好像并不困难,主要与ultralytics框架集成会麻烦点,核心剪枝代码在下面,有注释,完整代码在这里:yolov8_pruning.py

def prune(args):
    # 加载模型,yaml,pt
    model = YOLO(args.model)
    # 加入train_v2方法在YOLO对象中,主要是重写train方法,为了不让model.train()每次新建一个模型来训练,这样会导致剪枝失败。
    # 解决方法就是在训练完后重新加载训练完的权重到YOLO.model中。
    model.__setattr__("train_v2", train_v2.__get__(model))
    pruning_cfg = yaml_load(check_yaml(args.cfg))
    batch_size = pruning_cfg['batch']

    model.model.train()
    # split操作不支持剪枝,使用两个卷积替换split操作
    replace_c2f_with_c2f_v2(model.model)
    initialize_weights(model.model)  #设置 BN.eps, momentum, ReLU.inplace
    # 开启梯度训练
    for name, param in model.model.named_parameters():
        param.requires_grad = True

    example_inputs = torch.randn(1, 3, pruning_cfg["imgsz"], pruning_cfg["imgsz"]).to(model.device)
    # 保存浮点数、参数量、mAP和剪枝mAP的记录
    macs_list, nparams_list, map_list, pruned_map_list = [], [], [], []
    # 计算浮点数和参数量
    base_macs, base_nparams = tp.utils.count_ops_and_params(model.model, example_inputs)

    # 在剪枝操作之前先评估一次模型
    pruning_cfg['name'] = f"baseline_val"
    validation_model = deepcopy(model)
    metric = validation_model.val(**pruning_cfg)
    init_map = metric.box.map
    # 保存浮点数、参数量、mAP和剪枝mAP的记录
    macs_list.append(base_macs)
    nparams_list.append(base_nparams)
    map_list.append(init_map)
    pruned_map_list.append(init_map)
    print(f"Before Pruning: MACs={base_macs / 1e9: .5f} G, #Params={base_nparams / 1e6: .5f} M, mAP={init_map: .5f}")

    # 每一步的剪枝率
    pruning_ratio = 1 - math.pow((1 - args.target_prune_rate), 1 / args.iterative_steps)
    print(pruning_ratio)
    # 这里可以发现剪枝器可以在循环里或者循环外,虽然最终模型的稀疏性是没变化的,但每剪一次微调一次的效果会更好。
    for i in range(args.iterative_steps):

        model.model.train()
        for name, param in model.model.named_parameters():
            param.requires_grad = True

        ignored_layers = []
        unwrapped_parameters = []
        # 忽略的层,一般都对头部网络进行忽略,如果是目标检测就换成Detect,记得先引入,这是个类。
        for m in model.model.modules():
            if isinstance(m, (Segment,)):
                ignored_layers.append(m)

        example_inputs = example_inputs.to(model.device)
        pruner = tp.pruner.GroupNormPruner(
            model.model,
            example_inputs,
            importance=tp.importance.GroupNormImportance(),  # L2 norm pruning,
            iterative_steps=1,
            pruning_ratio=pruning_ratio,
            ignored_layers=ignored_layers,
            unwrapped_parameters=unwrapped_parameters
        )

        pruner.step()
        # 剪枝完后先评估一遍模型
        pruning_cfg['name'] = f"step_{i}_pre_val"
        validation_model.model = deepcopy(model.model)
        metric = validation_model.val(**pruning_cfg)
        pruned_map = metric.box.map
        pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(pruner.model, example_inputs.to(model.device))
        current_speed_up = float(macs_list[0]) / pruned_macs
        print(f"After pruning iter {i + 1}: MACs={pruned_macs / 1e9} G, #Params={pruned_nparams / 1e6} M, "
              f"mAP={pruned_map}, speed up={current_speed_up}")

        # 微调模型,重新训练,一般10-50epochs?
        for name, param in model.model.named_parameters():
            param.requires_grad = True
        pruning_cfg['name'] = f"step_{i}_finetune"
        pruning_cfg['batch'] = batch_size  # restore batch size
        model.train_v2(pruning=True, **pruning_cfg)

        # 微调完后再评估一遍模型
        pruning_cfg['name'] = f"step_{i}_post_val"
        validation_model = YOLO(model.trainer.best)
        metric = validation_model.val(**pruning_cfg)
        current_map = metric.box.map
        print(f"After fine tuning mAP={current_map}")

        macs_list.append(pruned_macs)
        nparams_list.append(pruned_nparams / base_nparams * 100)
        pruned_map_list.append(pruned_map)
        map_list.append(current_map)

        # 移除剪枝器
        del pruner

        save_pruning_performance_graph(nparams_list, map_list, macs_list, pruned_map_list)

        if init_map - current_map > args.max_map_drop and current_speed_up>=1.2:
            print("Pruning early stop")
            break

    model.export(format='onnx')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/907326
推荐阅读
相关标签
  

闽ICP备14008679号