当前位置:   article > 正文

Python 机器学习 线性回归 梯度下降法优化损失函数_机器学习梯度下降的损失函数

机器学习梯度下降的损失函数

Python 机器学习中,梯度下降法是一种用于优化线性回归模型(以及其他机器学习算法)的损失函数的通用算法。目的是通过迭代地调整模型的参数(权重和截距),以最小化损失函数,例如均方误差(MSE)。梯度下降的基本思想是计算损失函数相对于每个参数的梯度(即偏导数),然后朝着减少损失的方向调整参数。这个过程重复进行,直到损失函数收敛到最小值或达到预定的迭代次数。

 参考文档:Python 机器学习 线性回归 梯度下降法优化损失函数-CJavaPy

1、线性回归

线性回归是一种监督学习算法,用于模型化特征和目标变量之间的线性关系。它试图找到一条直线(在二维空间中)或一个超平面(在多维空间中),以便最好地拟合给定数据点。线性回归的目标是最小化预测值和实际值之间的差异,通常使用均方误差(MSE)作为损失函数来衡量这种差异。

参考文档Python 机器学习 线性回归算法

2、损失函数

为了训练机器学习模型,需要一个评价标准来衡量模型的性能。损失函数提供了这样一个标准,通过最小化损失函数来优化模型参数。损失函数(有时称为成本函数)衡量模型预测值与实际值之间的差异。对于线性回归,常用的损失函数是均方误差

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/911658
推荐阅读
相关标签
  

闽ICP备14008679号