赞
踩
下面介绍一下如何在ROS2
节点中使用多线程。
使用多线程就涉及到回调组(CallbackGroup
)了。
创建回调组的函数如下:
/// Create and return a callback group.
RCLCPP_PUBLIC
rclcpp::CallbackGroup::SharedPtr
create_callback_group(
rclcpp::CallbackGroupType group_type,
bool automatically_add_to_executor_with_node = true);
可以看到,创建回调组时是可以选择使用哪种类型的回调组(CallbackGroup
)的。回调组的类型如下:
enum class CallbackGroupType
{
MutuallyExclusive,
Reentrant
};
MutuallyExclusive
表示此组的回调函数是互斥的,不能在同一时间被执行。Reentrant
表示回调函数是可重入的,允许同一时刻被多次执行。通常使用的还是MutuallyExclusive
类型。
创建回调组回调组的另外一个参数是automatically_add_to_executor_with_node
。它的默认值是true
。
这个参数决定了回调组绑定node
的方式。
当automatically_add_to_executor_with_node
为true
时,采用在节点外部使用add_node
的方式绑定node
。可查看下面的示例程序。
examples/rclcpp/executors/multithreaded_executor/multithreaded_executor.cpp
#include <chrono> #include <functional> #include <memory> #include <string> #include <thread> #include "rclcpp/rclcpp.hpp" #include "std_msgs/msg/string.hpp" using namespace std::chrono_literals; /** * A small convenience function for converting a thread ID to a string **/ std::string string_thread_id() { auto hashed = std::hash<std::thread::id>()(std::this_thread::get_id()); return std::to_string(hashed); } /* For this example, we will be creating a publishing node like the one in minimal_publisher. * We will have a single subscriber node running 2 threads. Each thread loops at different speeds, and * just repeats what it sees from the publisher to the screen. */ class PublisherNode : public rclcpp::Node { public: PublisherNode() : Node("PublisherNode"), count_(0) { publisher_ = this->create_publisher<std_msgs::msg::String>("topic", 10); auto timer_callback = [this]() -> void { auto message = std_msgs::msg::String(); message.data = "Hello World! " + std::to_string(this->count_++); // Extract current thread auto curr_thread = string_thread_id(); // Prep display message RCLCPP_INFO( this->get_logger(), "\n<<THREAD %s>> Publishing '%s'", curr_thread.c_str(), message.data.c_str()); this->publisher_->publish(message); }; timer_ = this->create_wall_timer(500ms, timer_callback); } private: rclcpp::TimerBase::SharedPtr timer_; rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_; size_t count_; }; class DualThreadedNode : public rclcpp::Node { public: DualThreadedNode() : Node("DualThreadedNode") { /* These define the callback groups * They don't really do much on their own, but they have to exist in order to * assign callbacks to them. They're also what the executor looks for when trying to run multiple threads */ callback_group_subscriber1_ = this->create_callback_group( rclcpp::CallbackGroupType::MutuallyExclusive); callback_group_subscriber2_ = this->create_callback_group( rclcpp::CallbackGroupType::MutuallyExclusive); // Each of these callback groups is basically a thread // Everything assigned to one of them gets bundled into the same thread auto sub1_opt = rclcpp::SubscriptionOptions(); sub1_opt.callback_group = callback_group_subscriber1_; auto sub2_opt = rclcpp::SubscriptionOptions(); sub2_opt.callback_group = callback_group_subscriber2_; subscription1_ = this->create_subscription<std_msgs::msg::String>( "topic", rclcpp::QoS(10), // std::bind is sort of C++'s way of passing a function // If you're used to function-passing, skip these comments std::bind( &DualThreadedNode::subscriber1_cb, // First parameter is a reference to the function this, // What the function should be bound to std::placeholders::_1), // At this point we're not positive of all the // parameters being passed // So we just put a generic placeholder // into the binder // (since we know we need ONE parameter) sub1_opt); // This is where we set the callback group. // This subscription will run with callback group subscriber1 subscription2_ = this->create_subscription<std_msgs::msg::String>( "topic", rclcpp::QoS(10), std::bind( &DualThreadedNode::subscriber2_cb, this, std::placeholders::_1), sub2_opt); } private: /** * Simple function for generating a timestamp * Used for somewhat ineffectually demonstrating that the multithreading doesn't cripple performace */ std::string timing_string() { rclcpp::Time time = this->now(); return std::to_string(time.nanoseconds()); } /** * Every time the Publisher publishes something, all subscribers to the topic get poked * This function gets called when Subscriber1 is poked (due to the std::bind we used when defining it) */ void subscriber1_cb(const std_msgs::msg::String::SharedPtr msg) { auto message_received_at = timing_string(); // Extract current thread RCLCPP_INFO( this->get_logger(), "THREAD %s => Heard '%s' at %s", string_thread_id().c_str(), msg->data.c_str(), message_received_at.c_str()); } /** * This function gets called when Subscriber2 is poked * Since it's running on a separate thread than Subscriber 1, it will run at (more-or-less) the same time! */ void subscriber2_cb(const std_msgs::msg::String::SharedPtr msg) { auto message_received_at = timing_string(); // Prep display message RCLCPP_INFO( this->get_logger(), "THREAD %s => Heard '%s' at %s", string_thread_id().c_str(), msg->data.c_str(), message_received_at.c_str()); } rclcpp::CallbackGroup::SharedPtr callback_group_subscriber1_; rclcpp::CallbackGroup::SharedPtr callback_group_subscriber2_; rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription1_; rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subscription2_; }; int main(int argc, char * argv[]) { rclcpp::init(argc, argv); // You MUST use the MultiThreadedExecutor to use, well, multiple threads rclcpp::executors::MultiThreadedExecutor executor; auto pubnode = std::make_shared<PublisherNode>(); auto subnode = std::make_shared<DualThreadedNode>(); // This contains BOTH subscriber callbacks. // They will still run on different threads // One Node. Two callbacks. Two Threads executor.add_node(pubnode); executor.add_node(subnode); executor.spin(); rclcpp::shutdown(); return 0; }
当一个节点中有多个线程时,需要用到rclcpp::executors::MultiThreadedExecutor
。上面示例程序中,DualThreadedNode
是有两个线程的。这两个线程中分别运行一个订阅器的回调函数。两个线程独立运行互不干扰。
上面示例程序的完整版可使用下面的方式获取:
git clone https://github.com/shoufei403/ros2_galactic_tutorials.git
下载编译好后,可使用下面的命令运行测试。
ros2 run examples_rclcpp_multithreaded_executor
输出结果:
[PublisherNode]:
<<THREAD 6504961969737349918>> Publishing 'Hello World! 0'
[DualThreadedNode]: THREAD 3314359393590349369 => Heard 'Hello World! 0' at 1657449288147060106
[DualThreadedNode]: THREAD 6504961969737349918 => Heard 'Hello World! 0' at 1657449288147082759
[PublisherNode]:
<<THREAD 16625943778230753959>> Publishing 'Hello World! 1'
[DualThreadedNode]: THREAD 13431477624131009972 => Heard 'Hello World! 1' at 1657449288646978265
[DualThreadedNode]: THREAD 16625943778230753959 => Heard 'Hello World! 1' at 1657449288647097545
[PublisherNode]:
<<THREAD 12195914629433846612>> Publishing 'Hello World! 2'
[DualThreadedNode]: THREAD 17256547440473779954 => Heard 'Hello World! 2' at 1657449289146970672
[DualThreadedNode]: THREAD 12195914629433846612 => Heard 'Hello World! 2' at 1657449289147078711
可以看到回调函数是执行在不同的线程中的。
当automatically_add_to_executor_with_node
为false
时,采用在节点内部使用add_callback_group
的方式绑定node
。可查看下面的示例程序。
navigation2/nav2_behavior_tree/plugins/condition/is_battery_low_condition.cpp
#include <string> #include "nav2_behavior_tree/plugins/condition/is_battery_low_condition.hpp" namespace nav2_behavior_tree { IsBatteryLowCondition::IsBatteryLowCondition( const std::string & condition_name, const BT::NodeConfiguration & conf) : BT::ConditionNode(condition_name, conf), battery_topic_("/battery_status"), min_battery_(0.0), is_voltage_(false), is_battery_low_(false) { getInput("min_battery", min_battery_); getInput("battery_topic", battery_topic_); getInput("is_voltage", is_voltage_); node_ = config().blackboard->get<rclcpp::Node::SharedPtr>("node"); callback_group_ = node_->create_callback_group( rclcpp::CallbackGroupType::MutuallyExclusive, false); callback_group_executor_.add_callback_group(callback_group_, node_->get_node_base_interface()); rclcpp::SubscriptionOptions sub_option; sub_option.callback_group = callback_group_; battery_sub_ = node_->create_subscription<sensor_msgs::msg::BatteryState>( battery_topic_, rclcpp::SystemDefaultsQoS(), std::bind(&IsBatteryLowCondition::batteryCallback, this, std::placeholders::_1), sub_option); } BT::NodeStatus IsBatteryLowCondition::tick() { callback_group_executor_.spin_some(); if (is_battery_low_) { return BT::NodeStatus::SUCCESS; } return BT::NodeStatus::FAILURE; } void IsBatteryLowCondition::batteryCallback(sensor_msgs::msg::BatteryState::SharedPtr msg) { if (is_voltage_) { is_battery_low_ = msg->voltage <= min_battery_; } else { is_battery_low_ = msg->percentage <= min_battery_; } } } // namespace nav2_behavior_tree #include "behaviortree_cpp_v3/bt_factory.h" BT_REGISTER_NODES(factory) { factory.registerNodeType<nav2_behavior_tree::IsBatteryLowCondition>("IsBatteryLow"); }
navigation2/nav2_behavior_tree/include/nav2_behavior_tree/plugins/condition/is_battery_low_condition.hpp
#ifndef NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_ #define NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_ #include <string> #include <memory> #include <mutex> #include "rclcpp/rclcpp.hpp" #include "sensor_msgs/msg/battery_state.hpp" #include "behaviortree_cpp_v3/condition_node.h" namespace nav2_behavior_tree { /** * @brief A BT::ConditionNode that listens to a battery topic and * returns SUCCESS when battery is low and FAILURE otherwise */ class IsBatteryLowCondition : public BT::ConditionNode { public: /** * @brief A constructor for nav2_behavior_tree::IsBatteryLowCondition * @param condition_name Name for the XML tag for this node * @param conf BT node configuration */ IsBatteryLowCondition( const std::string & condition_name, const BT::NodeConfiguration & conf); IsBatteryLowCondition() = delete; /** * @brief The main override required by a BT action * @return BT::NodeStatus Status of tick execution */ BT::NodeStatus tick() override; /** * @brief Creates list of BT ports * @return BT::PortsList Containing node-specific ports */ static BT::PortsList providedPorts() { return { BT::InputPort<double>("min_battery", "Minimum battery percentage/voltage"), BT::InputPort<std::string>( "battery_topic", std::string("/battery_status"), "Battery topic"), BT::InputPort<bool>( "is_voltage", false, "If true voltage will be used to check for low battery"), }; } private: /** * @brief Callback function for battery topic * @param msg Shared pointer to sensor_msgs::msg::BatteryState message */ void batteryCallback(sensor_msgs::msg::BatteryState::SharedPtr msg); rclcpp::Node::SharedPtr node_; rclcpp::CallbackGroup::SharedPtr callback_group_; rclcpp::executors::SingleThreadedExecutor callback_group_executor_; rclcpp::Subscription<sensor_msgs::msg::BatteryState>::SharedPtr battery_sub_; std::string battery_topic_; double min_battery_; bool is_voltage_; bool is_battery_low_; }; } // namespace nav2_behavior_tree #endif // NAV2_BEHAVIOR_TREE__PLUGINS__CONDITION__IS_BATTERY_LOW_CONDITION_HPP_
可以看到,这里使用的是rclcpp::executors::SingleThreadedExecutor
(单线程执行器)。
觉得有用就点赞吧!
我是首飞,一个帮大家填坑的机器人开发攻城狮。
另外在公众号《首飞》内回复“机器人”获取精心推荐的C/C++,Python,Docker,Qt,ROS1/2等机器人行业常用技术资料。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。