赞
踩
做android开发有一段时间了,之前一直做服务类的产品,最近公司接手sip话机的项目,里面涉及到修改系统设置的问题,今天就把我在项目中有关NTP服务器同步android系统时间遇到的种种问题,在这做一个总结,希望给后面的人一些帮助,本人也是首次接触这样的项目,总结的如有不完善的地方,希望大神指点出来。。。。
有很多,网可以搜一下
cn.pool.ntp.org
s1a.time.edu.cn 北京邮电大学
s1b.time.edu.cn 清华大学
s1c.time.edu.cn 北京大学
s1d.time.edu.cn 东南大学
s1e.time.edu.cn 清华大学
s2a.time.edu.cn 清华大学
s2b.time.edu.cn 清华大学
中国[China] cn.ntp.org.cn
美国[America] us.ntp.org.cn
韩国[korea] kr.ntp.org.cn
新加坡[Singapore] sgp.ntp.org.cn
由于项目要求,在项目中同步系统时间是每隔多久同步一次系统时间,通过TimerTask来执行任务。通过handler来发送处理消息。相关代码:
/**
*校准时间
* 从ntp服务器中获取时间
* @param ntpHost
* ntp服务器域名地址
* @return 如果失败返回-1,否则返回当前的毫秒数
*/
public static void startCalibrateTime(final String mhostAddress, final int cycleTime) { MyLog.d(tag, "startCalibrateTime()"); if (mCycleTimer != null) { mCycleTask.cancel(); mCycleTimer.cancel(); mCycleTimer.purge(); mCycleTask = null; mCycleTimer = null; } mCycleTask = new TimerTask() { @Override public void run() { MyLog.d(tag, "run()"); long time = getTimeFromNtpServer(mhostAddress);//从获取ntp服务器上获取时间 if (time == -1) { MyLog.e(tag, "async time failed."); } else { SystemClock.setCurrentTimeMillis(time);//设置系统时间 } if (isTurnToSuccess) { isTurnToSuccess = false; mHandler.sendEmptyMessage(MSG_NTP_SEARCH_OK); } } @Override public boolean cancel() { MyLog.d(tag, "cancel()"); return super.cancel(); } }; mCycleTimer = new NgnTimer(); mCycleTimer.schedule(mCycleTask, 0, cycleTime); MyLog.d(tag, "start ntp timer time:" + cycleTime / 1000); }
handler处理消息,在不同的消息出处理不同的操作,针对项目要求,我在项目中保存了ntp服务器地址和每次隔多久同步一次的时间,可以自行定义。
涉及到的变量:
private static String mNtpServer = “pool.ntp.org”;
/**
* NTP获取时间失败时,每隔30s周期性重新获取,直至成功,成功后恢复正常计时
*/
private final static int CYCLE_TIME_ERROR = 30000;
private static Handler mHandler = new Handler() { @Override public void handleMessage(android.os.Message msg) { if (msg.what == MSG_NTP_SEARCH_FAILED) { String mhostAddress = GlobalConfigUtils .get(ConfTag.DATETIME_SNTP_SERVER); if (TextUtils.isEmpty(mhostAddress)) { mhostAddress = mNtpServer; } startCalibrateTime(mhostAddress, CYCLE_TIME_ERROR); } else if (msg.what == MSG_NTP_SEARCH_OK) { String mhostAddress = GlobalConfigUtils .get(ConfTag.DATETIME_SNTP_SERVER);//项目中保存的ntp服务器地址 if (TextUtils.isEmpty(mhostAddress)) { mhostAddress = mNtpServer; } String timeStr = GlobalConfigUtils .get(ConfTag.DATETIME_NTP_RESYNC_TIME);//项目中设置的系统默认隔多久同步时间 int time = 168 * 60 * 60 * 1000; if (!TextUtils.isEmpty(timeStr) && TextUtils.isDigitsOnly(timeStr)) { time = Integer.parseInt(timeStr)*3600*1000; } startCalibrateTime(mhostAddress, time); } }; };
停止校准时间
public static void stopCalibrateTimer() {
if (mCycleTimer != null) {
mCycleTask.cancel();
mCycleTimer.cancel();
mCycleTimer.purge();
mCycleTask = null;
mCycleTimer = null;
}
}
最重要的部分就是从ntp服务器上获取时间,这块很重要。。重要原因就是NTP工作原理简单分析一下:
下面是NTP工作原理图,图片是从我看的资料上截取过来勿喷。
Device A 与 Device B 通过网络相连,都有自己独立的系统时钟,需要通过ntp实现两个系统时钟的时间同步
1.Device B作为服务器,Device A作为客户端,需要网络使本地时钟与服务器时钟同步,假设同步之前,Device A的时间是10:00:00am,Device B的时间是11:00:00am
2.NTP报文的Device A 和Device B 之间单向传输时间是1秒,
3.Device处理报文时间是1秒
Device A 与Devide B 工作流程如下
获取ntp时间:
public static long getTimeFromNtpServer(String hostAddress) { MyLog.d(tag, "getTimeFromNtpServer()"); if (TextUtils.isEmpty(hostAddress)) { MyLog.e(tag, "Ntp host is null."); return -1; } if (mNtpClient == null) { mNtpClient = new SntpClient(); } boolean isSuccessful = mNtpClient.requestTime(hostAddress, 20000); MyLog.d(tag, "requestTime:" + isSuccessful); if (isSuccessful) { long now = mNtpClient.getNtpTime();//now就是获取的时间 if (isInErrorCycle) { if(!isTurnToSuccess){ isTurnToSuccess = true; } isInErrorCycle = false; } return now; } else { if (!isInErrorCycle) { isInErrorCycle = true; isTurnToSuccess = false; mHandler.sendEmptyMessage(MSG_NTP_SEARCH_FAILED); } } return -1; }
接下来就是封装好的获取时间方法,获取原理如上,接下来就是原理的代码,可以配合原理来理解
public static class SntpClient { private static final String TAG = "SntpClient"; private static final int REFERENCE_TIME_OFFSET = 16; private static final int ORIGINATE_TIME_OFFSET = 24; private static final int RECEIVE_TIME_OFFSET = 32; private static final int TRANSMIT_TIME_OFFSET = 40; private static final int NTP_PACKET_SIZE = 48; private static final int NTP_PORT = 123; private static final int NTP_MODE_CLIENT = 3; private static final int NTP_VERSION = 3; // Number of seconds between Jan 1, 1900 and Jan 1, 1970 // 70 years plus 17 leap days private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L; // system time computed from NTP server response private long mNtpTime; // value of SystemClock.elapsedRealtime() corresponding to mNtpTime private long mNtpTimeReference; // round trip time in milliseconds private long mRoundTripTime; /** * Sends an SNTP request to the given host and processes the response. * * @param host * host name of the server. * @param timeout * network timeout in milliseconds. * @return true if the transaction was successful. */ public boolean requestTime(String host, int timeout) { DatagramSocket socket = null; try { socket = new DatagramSocket(); socket.setSoTimeout(timeout); InetAddress address = InetAddress.getByName(host); byte[] buffer = new byte[NTP_PACKET_SIZE]; DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT); // set mode = 3 (client) and version = 3 // mode is in low 3 bits of first byte // version is in bits 3-5 of first byte buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3); // get current time and write it to the request packet long requestTime = System.currentTimeMillis(); MyLog.d(TAG, "RequestTime:"+new Date(requestTime)); long requestTicks = SystemClock.elapsedRealtime(); writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime); socket.send(request); // read the response DatagramPacket response = new DatagramPacket(buffer, buffer.length); socket.receive(response); long responseTicks = SystemClock.elapsedRealtime(); long responseTime = requestTime + (responseTicks - requestTicks); // extract the results long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET); long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET); long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET); long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime); // receiveTime = originateTime + transit + skew // responseTime = transmitTime + transit - skew // clockOffset = ((receiveTime - originateTime) + (transmitTime // - responseTime))/2 // = ((originateTime + transit + skew - originateTime) + // (transmitTime - (transmitTime + transit - skew)))/2 // = ((transit + skew) + (transmitTime - transmitTime - transit // + skew))/2 // = (transit + skew - transit + skew)/2 // = (2 * skew)/2 = skew long clockOffset = ((receiveTime - requestTime) + (transmitTime - System.currentTimeMillis())) / 2; // if (false) Log.d(TAG, "round trip: " + roundTripTime + // " ms"); // if (false) Log.d(TAG, "clock offset: " + clockOffset + // " ms"); // save our results - use the times on this side of the network // latency // (response rather than request time) mNtpTime = System.currentTimeMillis() + clockOffset; // mNtpTime = transmitTime; mNtpTimeReference = responseTicks; mRoundTripTime = roundTripTime; } catch (Exception e) { if (false) Log.d(TAG, "request time failed:" + e); e.printStackTrace(); return false; } finally { if (socket != null) { socket.close(); } } return true; } /** * Returns the time computed from the NTP transaction. * * @return time value computed from NTP server response. */ public long getNtpTime() { return mNtpTime; } /** * Returns the reference clock value (value of * SystemClock.elapsedRealtime()) corresponding to the NTP time. * * @return reference clock corresponding to the NTP time. */ public long getNtpTimeReference() { return mNtpTimeReference; } /** * Returns the round trip time of the NTP transaction * * @return round trip time in milliseconds. */ public long getRoundTripTime() { return mRoundTripTime; } /** * Reads an unsigned 32 bit big endian number from the given offset in * the buffer. */ private long read32(byte[] buffer, int offset) { byte b0 = buffer[offset]; byte b1 = buffer[offset + 1]; byte b2 = buffer[offset + 2]; byte b3 = buffer[offset + 3]; // convert signed bytes to unsigned values int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0); int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1); int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2); int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3); return ((long) i0 << 24) + ((long) i1 << 16) + ((long) i2 << 8) + (long) i3; } /** * Reads the NTP time stamp at the given offset in the buffer and * returns it as a system time (milliseconds since January 1, 1970). */ private long readTimeStamp(byte[] buffer, int offset) { long seconds = read32(buffer, offset); long fraction = read32(buffer, offset + 4); return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L); } /** * Writes system time (milliseconds since January 1, 1970) as an NTP * time stamp at the given offset in the buffer. */ private void writeTimeStamp(byte[] buffer, int offset, long time) { long seconds = time / 1000L; long milliseconds = time - seconds * 1000L; seconds += OFFSET_1900_TO_1970; // write seconds in big endian format buffer[offset++] = (byte) (seconds >> 24); buffer[offset++] = (byte) (seconds >> 16); buffer[offset++] = (byte) (seconds >> 8); buffer[offset++] = (byte) (seconds >> 0); long fraction = milliseconds * 0x100000000L / 1000L; // write fraction in big endian format buffer[offset++] = (byte) (fraction >> 24); buffer[offset++] = (byte) (fraction >> 16); buffer[offset++] = (byte) (fraction >> 8); // low order bits should be random data buffer[offset++] = (byte) (Math.random() * 255.0); } }
以上就是从ntp服务器上同步系统时间,项目比较完整,有疑问大家提出来,互相学习,到此结束。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。